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Abstract: For current state-of-the-art satisfiability algorithms based on the DPLL procedure and clause learn-
ing, the two main bottlenecks are the amounts of time and memory used. In the field of proof complexity,
these resources correspond to the length and space of resolution proofs for formulas in conjunctive normal form
(CNF). There has been a long line of research investigating these proof complexity measures, but while strong
results have been established for length, our understanding of space and how it relates to length has remained
quite poor. In particular, the question whether resolution proofs can be optimized for length and space simulta-
neously, or whether there are trade-offs between these two measures, has remained essentially open apart from
a few results in restricted settings.
In this paper, we remedy this situation by proving a host of length-space trade-off results for resolution in a
completely general setting. Our collection of trade-offs cover almost the whole range of values for the space
complexity of formulas, and most of the trade-offs are superpolynomial or even exponential and essentially tight.
Using similar techniques, we show that these trade-offs in fact extend (albeit with worse parameters) to the
exponentially stronger k-DNF resolution proof systems, which operate with formulas in disjunctive normal form
with terms of bounded arity k. We also answer the open question whether the k-DNF resolution systems form
a strict hierarchy with respect to space in the affirmative.
Our key technical contribution is the following, somewhat surprising, theorem: Any CNF formula F can be
transformed by simple variable substitution into a new formula F ′ such that if F has the right properties, F ′

can be proven in essentially the same length as F , whereas on the other hand the minimal number of lines one
needs to keep in memory simultaneously in any proof of F ′ is lower-bounded by the minimal number of variables
needed simultaneously in any proof of F . Applying this theorem to so-called pebbling formulas defined in terms
of pebble games on directed acyclic graphs, we obtain our results.

Keywords: proof complexity, resolution, k-NDF resolution, length, space, separation, trade-off, pebble game,
pebbling contradiction.

1 Introduction

A central theme in the field of propositional proof
complexity is the study of limitations of natural proof
systems. Such a study is typically conducted by con-
sidering a complexity measure of propositional proofs
and investigating under which circumstances this mea-
sure is large. The most thoroughly examined complex-
ity measure is that of proof size/length. The interest
in this measure is motivated by its connections to the

P vs. NP problem (since by [22], proving superpolyno-
mial lower bounds for arbitrary proof systems would
separate NP and co-NP, and hence show P 6= NP),
by methods for proving independence results in first
order theories of bounded arithmetic (for an example,
see [2]), and because lower bounds on proof length im-
ply lower bounds on the running time of algorithms
for solving NP-complete problems such as Satisfia-
bility (such algorithms are usually referred to as SAT
solvers).

Proof space. This paper focuses on a more recently
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suggested complexity measure known as space. This
measure was first defined and studied by Esteban
and Torán [26] in the context of the famous resolu-
tion proof system [18], which is a proof system for
refuting unsatisfiable formulas in conjunctive normal
form, henceforth CNF formulas. The space measure
was subsequently generalized to other proof systems
by Alekhnovich etal. in [4]. Roughly speaking, the
space of a proof corresponds to the minimal size of a
blackboard needed to give a self-contained presenta-
tion of the proof, where the correctness of each step
is verifiable from what is currently on the blackboard.
The interest in space complexity stems from two main
sources that we survey next.

First, there are intricate and often surprising con-
nections between the space and length complexity
measures. For resolution, it follows from the elegant
results of Atserias and Dalmau [7] that upper bounds
on space imply upper bounds on length. Esteban
and Torán [26] showed the converse that length upper
bounds imply space upper bounds for the restricted
case of tree-like resolution. Recall that the tree-like
version of a sequential1 proof system has the added
constraint that every line in the proof can be used at
most once to derive a subsequent line. In terms of
space, a proof is tree-like if any claim appearing on
the blackboard must be erased immediately after it
has been used to derive a new claim.

Another related question which has attracted inter-
est is whether space and length can display trade-offs,
that is whether there are formulas having proofs in
both short length and small space, but for which there
are no proofs in short length and small space simulta-
neously. Such length-space trade-offs have been estab-
lished in restricted settings by the current authors in
[11,36] 2 but nothing has been known for refutations
of explicit formulas in general, unrestricted resolution.

A second motivation to study space is because
of its connection to the memory consumption of
SAT solvers. For instance, the family of back-
tracking heuristics suggested by [23,24] and known
as Davis-Putnam-Logemann-Loveland (DPLL) SAT
solvers have the following property. When given as
input an unsatisfiable CNF formula F , the descrip-
tion of the execution of a DPLL SAT solver cor-

1A proof system is said to be sequential if a proof π in the
system is a sequence of lines π = {L1, . . . , Lτ} where each line
is derived from previous lines by one of a finite set of allowed
inference rules.

2A related result, claimed in [28], has later been retracted
by the authors in [29].

responds to a tree-like resolution proof refuting F .
Thus, lower bounds on tree-like refutation space imply
lower bounds on the memory consumption of DPLL
SAT solvers, much like lower bounds on tree-like refu-
tation length imply lower bounds on the running time
of DPLL heuristics.

During the last 10-15 years, a family of SAT solvers
known as DPLL with clause learning [9,34](which we
denote by DPLL+) has been put to practical use with
impressive success. For instance, an overwhelming
majority of the best algorithms in recent rounds of
the international SAT competitions [41] belong to this
class. These SAT solvers have the property that an ex-
ecution trace corresponds to a (non-tree-like) resolu-
tion refutation. Hence, space lower bounds in general
resolution can be thought of as corresponding to mem-
ory lower bounds for these algorithms, and length-
space trade-offs could have implications for trade-offs
between time efficiency and memory consumption.

We end this discussion by pointing out that there
is still much left to explore regarding the connection
between space lower bounds in proof complexity and
memory consumption of SAT solvers. On the one
hand, the memory consumption of a “typical” DPLL+
SAT solver can be substantially larger than the the-
oretical upper lower bounds that are guaranteed to
hold for the space complexity of any CNF formula,
so in this sense any lower bounds on refutation space
will suffer from the inherent limitation that they seem
“too small.” On the other hand, the theoretical lower
bounds on refutation space are worst-case bounds for
non-deterministic algorithms, and hence apply even to
the most memory-efficient proofs theoretically possi-
ble. This seems to be a very different scenario from
the kind of proofs produced by a typical SAT solver,
which has no way of “magically” knowing exactly
which clauses to keep in memory at which point in
the proof. Understanding what kind of practical im-
plications one can get on the memory consumption of
SAT solvers from refutation space lower bounds thus
remains an interesting open problem.

k-DNF resolution. The family of sequential proof
systems known as k-DNF resolution was introduced
by Kraj́ıček [31] as a intermediate step between reso-
lution and depth-2 Frege. Roughly speaking, for in-
tegers k > 0 the kth member of this family, denoted
henceforth by R(k), is only allowed to reason in terms
of formulas in disjunctive normal form (DNF formu-
las) with the added restriction that any conjunction
in any formula is over at most k literals. For k = 1,
the lines in the proof are hence disjunctions of liter-
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als, and the proof system R(1) = R is simply standard
resolution. At the other extreme, R[∞] is equivalent
to depth-2 Frege.

The original motivation to study this family of
proof systems, as stated in [31], was to better under-
stand the complexity of counting in weak models of
bounded arithmetic, and it was later observed that
these systems are also related to SAT solvers that
reason using multi-valued logic (see [30] for a discus-
sion of this point). By now a number of works have
shown superpolynomial lower bounds on the length
of R(k)-refutations, most notably for (various formu-
lations of) the pigeonhole principle and for random
CNF formulas [3,5,6,30,40,42,43]. Of particular rele-
vance to our current work are the results of Segerlind
et al. [43] and of Segerlind [42] showing that the family
of R(k)-systems form a strict hierarchy with respect
to proof length. More precisely, in these papers it is
shown that for every integer k > 0 one can find a fam-
ily of formulas {Fn}∞n=1 of arbitrarily large size n such
that Fn has a R(k+1)-refutation of polynomial length
nO(1) but all R(k)-refutations of Fn require exponen-
tial length 2nε

for some constant ε > 0.

Just as in the case for standard resolution, the un-
derstanding of space complexity in k-DNF resolution
has remained more limited. We are aware of only one
prior work by Esteban et al. [25] shedding light on this
question. Their paper establishes essentially optimal
linear space lower bounds for R(k) and also prove that
the family of tree-like R(k) systems form a strict hier-
archy with respect to space. What they show is that
there exist arbitrarily large formulas Fn of size n that
can be refuted in tree-like R(k + 1) in constant space
but require space Ω(n/ log2 n) to be refuted in tree-like
R(k).

It should be pointed out, however, that as observed
in [25,31] the family of tree-like R(k) systems for all
k > 0 are strictly weaker than standard resolution. As
was noted above, the family of general, unrestricted
R(k) systems are strictly stronger than resolution, so
the results in [25] leave completely open the question
of whether there is a strict space hierarchy for (non-
tree-like) R(k) or not.

(Informal) definition of length and space. As
a final point before turning to our results, we briefly
and informally recall what is meant by “length” and
“space.” Following [4], we view a refutation of an
unsatisfiable CNF formula F as being presented on
a blackboard. The refutation is represented as a se-
quence of sets of k-DNF formulas π = {D0, . . . ,Dτ},

where Dt is a snapshot of the blackboard at time t in
the refutation. In particular, D0 should be the empty
set, Dτ should contain the contradictory empty for-
mula, and at time t we can go from Dt−1 to Dt by (i)
writing a clause of F (an axiom) on the blackboard,
(ii) erasing a line from the board, or (iii) inferring
a new line from those lines present on the board ac-
cording to the inference rules of k-DNF resolution.
We do not discuss the details of these rules here, since
the exact definitions in fact do not matter—the lower
bounds we prove hold for any arbitrarily strong (but
sound) rules. What is important is that the only new
formulas that can be derived at any given point in
time are those implied by the set of formulas that are
currently on the blackboard, and that these formulas
are all k-DNFs.

The length of a refutation is the number of formulas
appearing in the refutation counted with repetitions,
or equivalently (within a factor of 2) the number of
derivation steps. There are several different ways to
measure the space of a set Dt in our refutation. The
crudest way is to count the number of k-DNF formulas
on the board, i.e., to measure the size of Dt. We call
this the formula space, or simply, space of Dt. (For
resolution, i.e., when k = 1, this is the well-studied
measure of clause space.) A finer granulation is to
measure the total space—the number of appearances
of literals in Dt, counted with repetitions. Formula
space and total space are the two space measures that
have received the most attention in previous research,
and they are also the focus of the current paper. A
third, closely related, measure that will also be of in-
terest to us is variable space, defined as the number
of distinct variables appearing on the board. It is eas-
ily seen that variable space is a lower bound on total
space. For all of these space measures, the space of a
refutation π = {D0, . . . ,Dτ} is the maximal space of
any k-DNF Dt in it.

1.1 Our results in brief

Space hierarchy for k-DNF resolution. Our first
main result is that Krajicek’s family of k-DNF resolu-
tion proof systems form a strict hierarchy with respect
to space. More precisely, we separate k-DNF resolu-
tion from (k +1)-DNF resolution in the sense that we
exhibit for every k a family of explicitly constructible3

CNF formulas of size n that can be refuted in con-
stant formula space and linear length simultaneously

3A family of formulas is explicitly constructible if there exists
a polynomial time algorithm that on input 1n produces the nth
member of the family.
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in (k+1)-DNF resolution (i.e., they are very easy with
respect to both measures) but have the property that
any k-DNF resolution, no matter how long or short,
must by necessity use at least order of k+1

√
n formula

space.

Length-space trade-offs. Our second main result
is a collection of strong length-space trade-offs for k-
DNF resolution. For k = 1, i.e., standard resolution,
these are the first trade-off results for resolution refu-
tations of explicit formulas in the general, unrestricted
resolution proof system, thus eliminating all technical
restrictions in the previous works [11,36]. For k > 1,
to the best of our knowledge no trade-offs have been
known even in restricted settings.

We also want to emphasize two other novel aspects
of our results. First, as was discussed above there are
several different ways of measuring space, and previ-
ous papers have focused on one particular measure and
proven results specifically for that measure. Our tech-
niques, however, allow us to obtain results that hold
for both total space and formula space (i.e., the largest
and smallest space measure) simultaneously. Second,
our upper bounds hold for the standard syntactic ver-
sion of the proof systems, where new formulas can be
derived from two existing formulas by a limited set
of structural rules, whereas the lower bounds hold for
semantic versions where new formulas can be derived
from an unlimited set of formulas by arbitrary sound
rules. The reason this is worth pointing out is that
in general, semantic k-DNF resolution proof systems
are known to be exponentially stronger than syntactic
systems.

We give the formal statements of our trade-offs in
Section 2, but a general template for the kind of trade-
off theorems we are able to prove is as follows.

Theorem 1(Trade-off theorem template (infor-
mal)). Let K be a fixed positive integer and let s1o(n)
and shi(n) be suitable functions such that s1o(n) ¿
shi(n) = On/ log log n. Then there are explicitly con-
structible CNF formulas {Fn}∞n=1 of size O(n) and
width O(1) (with constants depending on K) such that
the following holds:

• The formulas Fn are refutable in syntactic reso-
lution in (small) total space Os1o(n).

• There are also syntactic resolution refutations
πn of Fn in simultaneous length On and (much
larger) total space O(shi(n)).

• However, any resolution refutation, even se-
mantic, in formula space o((shi(n))) must have

superpolynomial or sometimes even exponential
length.

• Even for the much stronger semantic k-DNF
resolution proof systems, k 6 K, it holds that
any R(k)R(k)-refutation of Fn in formula space
O k+1

√
shi(n) must have superpolynomial length

(or exponential length, correspondingly).

We instantiate this theorem template for a wide
range of space functions s1o(n) and shi(n) from con-
stant space all the way up to nearly linear space. This
is in contrast to [36], where the trade-off results are ob-
tained only for a very carefully selected ratio of space
to formula size. Moreover, our trade-offs are robust in
that they are not sensitive to small variations in either
length or space (as in [36]). That is, intuitively speak-
ing they will not show up only for a SAT solver being
unlucky and picking just the wrong threshold when
trying to hold down the memory consumption. In-
stead, any resolution refutation having length or space
in the same general vicinity will be subject to the same
qualitative trade-off behavior.

1.2 Overview of technical
contributions

We want to highlight three technical contributions
underpinning the results discussed informally above.

Substitution space theorems. Our first key techni-
cal contribution is a general way to derive strong space
lower bounds in resolution from weak lower bounds on
the number of variables that occur simultaneously in
a proof. Very loosely, we show the following: Sup-
pose we have a formula that has short refutations but
where any such short refutation must mention many
variables at some point. Then by making variable
substitutions in this formula and expanding the re-
sult into a CNF formula in the natural way, this new
formula will still have short refutations, but now any
such refutation must use lots of space, in the sense
that lower bounds on variable space will translate into
lower bounds on formula space.

We believe that this generic procedure of transform-
ing weak space lower bounds into stronger ones is an
interesting result in its own right that sheds new light
on space measures in proof complexity. To support
this point, we strengthen the theorem by showing that
not only can we obtain strong resolution lower bounds
from weak lower bounds in resolution in this way, but
it is also possible to lift weak resolution lower bounds
to strong lower bounds in other more powerful proof
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systems, namely k-DNF resolution systems. We re-
mark that this general idea of “hardness amplifica-
tion” in proof complexity has also been used in the
recent work of Beame et al. [10], although the actual
techniques there appear somewhat orthogonal to those
in the current paper (and, in particular, incomparable
in the sense that it seems neither paper can be used
to derive the results in the other).

Minimally unsatisfiable k-DNF sets. One crucial
ingredient in the proof of the substitution space the-
orem for resolution is analyzing the structure of sets
of disjunctive clauses that imply many other clauses.
Intuitively, it seems reasonable that if the set of im-
plied clauses is sufficiently large and disjoint, the set
of clauses implying all these clauses cannot itself be
too small. One important special case of this is for
clause sets containing many variables but being mini-
mally unsatifiable—that is, every clause places a nec-
essary constraint on the variables to enforce unsat-
ifiability and if just one arbitrary clause is removed
from the set, then the rest can be satisfied. It is well
known that such a clause set must contain strictly
more clauses than variables, and we can use similar
proof techniques to derive the more general result that
we need.

When we want to extend our theorem to k-DNF
resolution, it becomes essential to understand instead
the structure of sets of k-DNF formulas that imply
many other k-DNF formulas. Here there are no pre-
vious results to build on, as the proof techniques that
yield tight results for disjunctive clauses can be shown
to break down fundamentally. Instead, we have to de-
velop new methods. One important step along the way
is to understand the structure of minimally unsatisfi-
able sets of k-DNF formulas, which appears to be a
natural combinatorial problem of independent inter-
est. We prove that a minimally unsatisfiable k-DNF
set of size m can contain at most / mk+1 variables,
and this bound turns out to be tight up to an additive
one in the exponent in view of recent joint work [39]
of Razborov and the second author.

Reductions between resolution and pebbling.
Using the substitution space theorems, we can con-
struct reductions between (k-DNF) resolution on the
one hand and so-called pebble games played on di-
rected acyclic graphs (DAGs) on the other. In one di-
rection, this reduction is easy, but the other direction
is nontrivial. Moreover, our reductions are time- and
space-preserving. This allows us (modulo some tech-
nical complications which we ignore for the moment)
to translate known trade-off results for pebbling into

corresponding trade-offs for resolution. This is done
by transforming the pebble game played on a DAG
G into a CNF formula that encodes this particular
problem instance of the game, and showing that this
formula has similar trade-off properties in resolution
as the DAG G has for the pebble game.

With hindsight, such a correspondence might seem
more or less obvious, so let us stress that this is not the
case. Pebble games on graphs and R(k)-refutations
of CNF formulas are very different objects. Once we
have translated a pebbling instance into a CNF for-
mula, it is not at all clear why an R(k)-prover refut-
ing this formula would have to care about how it was
constructed. There might be shortcuts in the proof
complexity world that do not correspond to anything
meaningful in the pebbling world. And indeed, read-
ing previous literature on pebbling formulas in proof
complexity reveals a few such surprising shortcuts,
and there has been no consensus on what properties
these formulas are likely to have in general.

What we show is that for the right flavor of pebbling
formulas, any prover refuting such formulas must in
effect reason in terms of pebblings. More precisely, we
show that given any K(k)-refutation, no matter how
it is structured, we can extract from it a pebbling of
the underlying DAG, and this pebbling has at least as
good time and space properties as the refutation from
which it was extracted. In other words, the pebbling
formula inherits the time-space trade-off properties of
the DAG in terms of which it is defined. This allows
us to draw on the rich literature on pebbling trade-
offs from the 1970s and 1980s, as well as on newer
results by the second author in [37], to obtain strong
trade-offs in proof complexity.

1.3 Organization of the rest of this
paper

In Section 2, we present formal statements of our
main results. Then, in order not to let all the notation
and terminology obscure what is in essence a clean
and simple proof construction, in Section 3 we briefly
outline some of the key ingredients in the proofs. We
refer the reader to the full-length version [16] for the
details. Concluding this extended abstract, in Section
4 we briefly discuss some open questions.

2 Formal statements of results

In what follows, let us write Lπ to denote the length
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of a resolution refutation and Sp(π), TotSp(π), and
V arSp(π) to denote the formula space, total space
and variable space, respectively. Taking the min-
imum over all resolution refutations of F , we let
LR(F ` 0) denote the length of a shortest refutation,
and SpR(F ` 0), TotSpR(F ` 0), and V arSpR(F ` 0)
are defined completely analogously. These definitions
are also generalized to R(k) for general k. To state our
results it will also convenient to use the notation Wπ
for the width of a standard resolution refutation, i.e.,
the size of a largest clause in it, and WR(F ` 0) for
the minimal width of any standard resolution refuta-
tion of F . See [16] for more formal definitions of these
concepts.

2.1 Substitution space theorems

If F is a NCF formula over variables x, y, z, . . . and
f : {0, 1}d 7→ {0, 1} is a Boolean function over d vari-
ables, we can obtain a new CNF formula by substitut-
ing f(x1, . . . , xd) for every variable x and then expand
to conjunctive normal form. We will write F [f ] to de-
note the resulting substitution formula. For example,
for the disjunctive clause C = xȳ and the exclusive or
function f = x1 ⊕ x2 we have that

C[f ] = (x1 ∨ x2 ∨ y1 ∨ ȳ2)

∧ (x1 ∨ x2 ∨ y1 ∨ ȳ2)

∧ (x1 ∨ x2 ∨ y1 ∨ y2) (1)

∧ (x1 ∨ x2 ∨ y1 ∨ y2)

We say that f is k-non-authoritarian if no partial
assignment to any subset of k variables can fix the
value of f to true or false and that f is k-authoritarian
otherwise. For instance, the XOR function

⊕
on

d + 1 variables is k-non-authoritarian, as is the ma-
jority function on 2d + 1 variables. If f is 1−non-
authoritarian (k-authoritarian) we say that the func-
tion is simply non-authoritarian (authoritarian). For
example, non-exclusive or ∨ of any arity is always au-
thoritarian.

Loosely put, the substitution space theorem for res-
olution says that if a CNF formula F can be refuted in
resolution in small length and width simultaneously,
then so can the substitution formula F [fd]. There
is an analogous result in the other direction as well
in the sense that we can translate any refutation πf

of F [fd into a refutation π of the original formula F
where the length of π is almost upper-bounded by the
length of πf (this will be made precise below). So far

this is nothing very unexpected, but what is more in-
teresting is that if fd is non-authoritarian, then the
clause space of πf is an upper bound on the num-
ber of variables mentioned simultaneously in π. Thus,
the theorem says that we can convert (weak) lower
bounds on variable space into (strong) lower bounds
on clause space by making substitutions using non-
authoritarian functions.

Theorem 2(Substitution space theorem for res-
olution). Let F be any unsatisfiable CNF formula
and fd be any non-constant Boolean function of arity
d. Then it holds that the substitution formula F [fd]
can be refuted in resolution in width

length

and total space

In the other direction, any semantic resolution refu-
tation πf : F [fd] ` 0 of the substitution formulacan
be transformed into a syntactic resolution refutation
refutationπ : F ` 0 of the original formula such
that the number of axiom downloads4 in π is at most
the number of axiom downloads in πf . If in addi-
tion fd is non-authoritarian, it holds that Spπf >
V arSpπ, i.e., the clause space of refuting the substitu-
tion formulaF [fd] is lower-bounded by the of refuting
the original formula F .

Note that if F is refutable simultaneously in linear
length and constant width, then the bound in Theo-
rem 2 on L(F [fd] ` 0) becomes linear in LF ` 0.

4It would have been nice if the bound in terms of number
of axiom downloads could have be strengthened to a bound in
terms of length, but this is not true. The reason for this is
that the proof refuting F [fd] is allowed to use any arbitrarily
strong semantic inference rules, and this can lead to exponential
savings compared to syntactic resolution. To see this, just let
F be an encoding of, say, the pigeonhole principle and let πf

be the refutation that downloads all axioms of F [fd] and then
derives contradiction in one step. Luckily enough, though, the
bound in terms of axiom downloads turns out to be exactly
what we need for our applications.
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The substitution space theorem for k-DNF resolu-
tion extends Theorem 2 by telling us that for k-non-
authoritarian functions f , we can translate back and
forth between standard resolution refutations of F and
R-refutations of the substitution formula F [f ] in a
(reasonably) length- and space-preserving way. When
the “proof blackboard” contains k-DNFs instead of
disjunctive clauses, the analysis becomes much more
challenging, however, and the bounds we are able
to obtain become correspondingly worse. Below, we
state the theorem with asymptotic factors hidden by
the asymptotic notation to make it easier to parse.
The complete version is given in [16].

Theorem 3(Substitution space theorem for k-
DNF resolution) Let F be any unsatisfiable c-CNF
formula and fd be any non-constant Boolean function
of arity d, and suppose furthermore that c, d, and k
are universal constants. Then the following two prop-
erties hold for the substitution formula F [fd]:

1. If F can be refuted in syntactic standard resolu-
tion in length L and total space s simultaneously,
then F [fd] can be refuted in syntactic R(d) in
length OL and total space O(s) simultaneously.

2. If fd is k-non-authoritarian and F [fd] can be re-
futed by a semantic R(k)-refutation that requires
formula space s and makes L axiom downloads,
then F can be refuted by a syntactic standard res-
olution refutation that requires variable space at
most O(sk+1) and makes at most L axiom down-
loads.

The proofs of Theorems 2 and 3 are inspired by
our recent work [14] and indeed our main theorem
there can be seen to follow from Theorem 2. Let
us discuss the new aspects of the more general the-
orems presented in this paper. First and foremost,
our results extend to R(k) for k > 1 whereas the
previous theorem applies only to resolution. Second,
our previous statement only holds for a very special
kind of formulas (namely the pebbling formulas dis-
cussed above) whereas Theorems 2 and 3 can be used
to convert any CNF formula requiring large variable
space into a new and closely related CNF formula re-
quiring large formula space. Third, in this paper we
get length-preserving as well as space-preserving re-
ductions, whereas it was unclear how to derive simi-
lar reductions from our previous work. And length-
preserving reductions are crucial for our length-space
trade-offs described below.

We will return to these theorems and sketch the
main ingredients in the proofs in Sections 3.1 and 3.2,

but before that we want to describe why these tools
will be so useful for us. We do so next.

2.2 Translating refutations to
pebblings

The pebble game played on a DAG G models the
calculation described by G, where the source vertices
contain the inputs and non-source vertices specify op-
erations on the values of the predecessors. Placing a
pebble on a vertex v corresponds to storing in mem-
ory the partial result of the calculation described by
the subgraph rooted at v. Removing a pebble from
v corresponds to deleting the partial result of v from
memory. Black pebbles correspond to deterministic
computation and white pebbles to nondeterministic
guesses. A pebbling P of G is a sequence of moves
starting with the graph being completely empty and
ending with all vertices empty except for a black peb-
ble on the (unique) sink vertex. The time of a peb-
bling is the number of pebbling moves and the space
is the maximal number of pebbles needed at any point
during the pebbling.

The pebble game on the graph G can be encoded
as an unsatisfiable CNF formula PebG saying that
the sources of G are true and that truth propagates
through the graph in accordance with the pebbling
rules, but that the sink is false. Given any black-only
pebbling P of G, we can mimic this pebbling in a res-
olution refutation of PedG by deriving that a literal
v is true whenever the corresponding vertex in G is
pebbled (this was perhaps first observed in [13]).

Lemma 4([13]) Let G be a DAG with unique sink
and bounded vertex indegree. Then given any com-
plete black pebbling P of G, we can construct a
standard resolution refutationπ : PebG ` 0 such
thatL(π) = O(time(P)), W(π) = O1, and TotSp(π) =
O(space(P)).

In the other direction, we start with the result of the
first author11 that if we take any refutation of a peb-
bling contradiction and let positive and negative liter-
als correspond to black and white pebbles respectively,
then we get (essentially) a legal black-white pebbling
of the underlying DAG. That is not quite what we
need, however, since it only provides a weak bound in
terms of variable space.

This is where Thorems 2 and 3 come into play.
If we make substitutions in PebG with suitably non-
authoritarian functions, the upper bounds in Lemma

407



E. BEN-SASSON, J. NORDSTRÖM

4 remain true (with adjustments in constant factors),
while the lower bounds are lifted from variable space
to formula space. For simplicity, we only state the
lower bounds in the special case for standard resolu-
tion below.

Theorem 5. Let f be any non-authoritarian
Boolean function and G be any DAG with unique sink
and bounded indegree. Then from any standard resolu-
tion π PebG[f ] we can extract a black-white pebbling
strategy Pπ for G such that time Pπ = O(L(π)) and
space(Pπ) = O(Sp(π)).

2.3 Space separations and length-
space trade-offs

Combining the theorems in Section 2.1 with the re-
ductions between resolution and pebble games in Sec-
tion 2.2, we can now establish our space separation
and length-space trade-off results. Let us start by for-
mally stating the space hierarchy theorem for R(k).

Theorem 6(k-DNF resolution space hierarchy).
For every k > 1 there exists an explicitly constructible
family {Fn}∞n=1 of CNF formulas of size Θ(n) and
width O(1) such that

• there are R(k + 1)-refutations πn :Fn ` 0 in si-
multaneous length L(πn) = O(n) and formula
space Sp(πn) = O(1), but

• any R(k)-refutation of Fn requires formula
space Ω( k+1

√
n/ log n.)

The constants hidden by the asymptotic notation de-
pend only on k.

The families {Fn}∞n=1 are obtained by considering
pebbling formulas defined in terms of the graphs in
[27] requiring pebbling space Θ(n/ log n), and substi-
tuting a k-non-authoritarian Boolean function f of ar-
ity k+1, for instance XOR over k+1 variables, in these
formulas.

Moving on to our length-space trade-offs, in the re-
mainder of this section we try to highlight some of
the results that we find to be the most interesting. A
fuller and more detailed account of our collection of
trade-off results is given in [16]. We reiterate that all
of our results are for explicitly constructible formu-
las, and that in addition most of the constructions are
actually very clean and transparent in that they are
obtainable from pebbling formulas over simple fami-
lies of DAGs.

From the point of view of space complexity, the
easiest formulas are those refutable in constant total
space, i.e., formulas having so simple a structure that
there are resolution refutations where we never need
to keep more than a constant number of symbols on
the proof blackboard. A priori, it is not even clear
whether we should expect that any trade-off phenom-
ena could occur for such formulas, but it turns out
that there are quadratic length-space trade-offs.

Theorem 7(Quadratic trade-offs for constant
space). For any fixed positive integer K there
are explicitly constructible CNF formulas {Fn}∞n=1 of
size Θ(n) and width O(1) such that the following
holds (where all multiplicative constants hidden in the
asymptotic notation depend only on K):

• The formulas Fn are refutable in syntactic reso-
lution in total space TotSpR(Fn ` 0) = O(1).

• For any shi(n) = O(
√

n) there are syntactic
resolution refutations πn of Fn in simultaneous
length L(πn) = O((n/shi(n))2) and total space
TotSp(πn) = O(shi(n)).

• For any semantic resolution refutation πn :
Fn ` 0 in formula space (i.e., clause space)
Sp(πn) 6 shi(n) it holds that L(πn) =
Ω((n/shi(n))2).

• For any k 6 K, any semantic k-DNF res-
olution refutation πn of Fn in formula space
Spπn 6 shi(n) must have length L(πn) =
Ω(

(
n/

(
shi(n)1/(k+1)

))2). In particular, any
constant-space R(k)-refutation must also have
quadratic length.

Theorem 7 follows by combining our machinery with
the seminal work on pebbling trade-offs by Lengauer
and Tarjan [33] and the structural results on simu-
lations of black-white pebblings by resolution by the
second author in [37].

Remark 8. Notice that the trade-off applies to both
formula space and total space. This is because the
upper bound is stated in terms of the larger of these
two measures (total space) while the lower bound is
in terms of the smaller one (formula space). Note
also that the upper bounds hold for the usual, syntac-
tic versions of the proof systems, whereas the lower
bounds hold for the much stronger semantic systems,
and that for standard resolution the upper and lower
bounds are tight up to constant factors. These prop-
erties of our results are inherited from the substitu-
tion space theorems, and they hold for all our trade-
offs stated here. Finally, we remark that we have to
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pick some arbitrary but fixed limit K for the size of
the terms when stating the results for k-DNF resolu-
tion, since for any family of formulas we consider there
will be very length- and space-efficient R(k)-refutation
refutations if we allow terms of unbounded size.

Our next result relies on a new pebbling trade-off
result in [37], building on earlier work by Carlson and
Savage [19,20]. Using this new result, we can derive
among other things the rather striking statement that
for any arbitrarily slowly growing non-constant func-
tion, there are explicit formulas of such (arbitrarily
small) space complexity that nevertheless exhibit su-
perpolynomial length-space trade-offs.

Theorem 9(Superpolynomial trade-offs for ar-
bitrarily slowly growing space). Let s1o(n) =
ω(1) be any arbitrarily slowly growing function5 and
fix any ε > 0 and positive integer K. Then there are
explicitly constructible CNF formulas {Fn}∞n=1 of size
Θ(n) and width O(1) such that the following holds:

• The formulas Fn are refutable in syntactic reso-
lution in total space TotSpR(Fn ` 0) = (Olo(n)).

• There are syntactic resolution refutations πn

of the formulas Fn in simultaneous length
L(πn) = O(n) and total space TotSp(πn) =
O(

(
n/lo(n)2

)1/3).
• Any semantic resolution refutation of Fn in

clause space O((n/lo(n)2)1/3−ε) must have su-
perpolynomial length.

• For any k 6 K, any semantic k-DNF
resolution refutation of Fn in formula space
O(

(
n/lo(n)2

)1/(3(k+1))−ε) must have superpoly-
nomial length.

All multiplicative constants hidden in the asymptotic
notation depend only on K, ε and s1o.

Observe the robust nature of this trade-off, which
is displayed by the long range of space complexity in
standard resolution, from ω(1) up to ≈ n1/3, which
requires superpolynomial length. Note also that the
trade-off result for standard resolution is very nearly
tight in the sense that the superpolynomial lower
bound on length in terms of space reaches up to very
close to where the linear upper bound kicks in.

The two theorems above focus on trade-offs for for-

5For technical reasons, let us also assume here that s1o(n) =
O(n1/7), i.e., that s1o(n) does not grow too quickly. This re-
striction is inconsequential since for such fast-growing s1o(n)
other trade-off results presented below will yield much stronger
bounds.

mulas of low space complexity, and the lower bounds
on length obtained in the trade-offs are somewhat
weak—the superpolynomial growth in Theorem 9 is
something like nslo(n). We next present a theorem
that has both a stronger superpolynomial length lower
bounds than Theorem 9 and an even more robust
trade-off covering a wider (although non-overlapping)
space interval. This theorem again follows by applying
our tools to the pebbling trade-offs in [33].

Theorem 10(Robust superpolynomial trade-off
for medium-range space). For any positive inte-
ger K, there are explicitly constructible CNF formulas
{Fn}∞n=1 of size Θ(n) and width O(1) such that the fol-
lowing holds (where the hidden constants depend only
on K):

• The formulas Fn are refutable in syntactic res-
olution in total space TotSpR(Fn ` 0) =
O(log2 n).

• There are syntactic resolution refutations of Fn

in length O(n) and total space O(n/ log n).
• Any semantic resolution refutation of Fn in

clause space Sp(πn) = o(n/ log n) must have
length L(πn) = nΩ(log log n).

• For any k 6 K, any semantic R(k)-refutation
in formula space Sp(πn) = o((n/ log n)1/(k+1))
must have length ÃL(πn) = nΩ(log log n).

Having presented trade-off results in the low-space
and medium-space range, we conclude by presenting a
result at the other end of the space spectrum. Namely,
appealing one last time to yet another result in [33],
we can show that there are formulas of nearly linear
space complexity (recall that any formula is refutable
in linear formula space) that exhibit not only super-
polynomial but even exponential trade-offs.

We state this final theorem only for standard reso-
lution since it is not clear whether it makes sense for
R(k). That is, we can certainly derive formal trade-off
bounds in terms of the (k + 1)st square root as in the
theorems above, but we do not know whether there ac-
tually exist R(k)-refutation in sufficiently small space
so that the trade-offs apply. Hence, such trade-off
claims for R(k), although impressive looking, might
simply be vacuous. We can obtain other exponential
trade-offs for R(k) (see [16] for the details), but they
are not quite as strong as the result below for resolu-
tion.

Theorem 11(Exponential trade-offs for nearly-
linear space). Let κ be any sufficiently large con-
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stant. Then there are CNF formcelas Fn of size Θn
and width O(1) and a constant κ′ ¿ κ such that:

• The first lillet is miking.
• Fn have syntactic resolution refutations in total

space κ′ · n/ log n.
• Fn is also refutable in syntactic resolution in

length O(n) and total space O(n) simultaneously.
• However, any semantic refutation of Fn in

clause space at most κ · n/ log n has length
exp

(
nΩ(1)

)
.

To get a feeling for this last trade-off result, note
again that the lower bound holds for proof systems
with arbitrarily strong derivation rules, as long as
they operate with disjunctive clauses. In particular,
it holds for proof systems that can in one step derive
anything that is semantically implied by the current
content of the blackboard. Recall that such a proof
system can refute any unsatisfiable CNF formula F
with n clauses in length n+1 simply by writing down
all clauses of F on the blackboard and then conclud-
ing, in one single derivation step, the contradictory
empty clause implied by F . In Theorem 11 this proof
system has space nearly sufficient for such an ultra-
short refutation of the whole formula. But even so,
when we feed this proof system the formulas Fn and
restrict it to having at most O(n/ log n) clauses on the
blackboard at any one given time, it will have to keep
going for an exponential number of steps before it is
finished.

3 Outline of proofs

Instead of trying to present the somewhat lengthy
formal proofs of our theorems, in this extended ab-
stract we want to focus on providing some intuition
for the substitution space theorems that are the keys
to our results. Let us first in Section 3.1 discuss the
result for standard resolution and describe the proof
structure in some detail. The analogous result for k-
DNF resolution is proven in a similar way, but with the
added technical complications that we need to prove
size bounds on sets of k-DNF formulas. These issues,
and in particular our result for minimally unsatisfiable
sets of k-DNF formulas, are discussed in Section 3.2.

3.1 Proof ingredients for substitution
space theorem for resolution

Let F be any unsatisfiable CNF formla and fd any
non-authoritarian Boolean function (as described in

Section 2.1), and let F [fd] denote the CNF formula
obtained by substituting f(x1, . . . , xd) for every vari-
able x in F and expanding the result to conjunctive
normal form.

The first part of Theorem 2, that any resolution
refutation of F can be transformed into a refutation
of F [fd] with similar parameters, is not hard to prove.
Essentially, whenever the refutation of the original
formula F writes a clause C on the blackboard, we
write the corresponding set of clauses C[fd] on the
blackboard where we are refuting the substitution for-
mula. We make the additional observation that if
we take any resolution refutation π of F and write
down the new refutation πf of C[fd] resulting from
this transformation—assuming for concreteness that
the function fd is exclusive or, say—it is easy to ver-
ify that the number of variable occurrences in π, i.e.,
the variable space, translates into a lower bound on
the number of clauses in πf , i.e., the formula space
(which as we recall is called clause space for standard
resolution). Equation (1) provides an example of this
variable-space-to-clause-space blow-up.

It is more challenging, however, to prove the reverse
direction that we can get lower bounds on clause space
for F [fd] from lower bounds on variable spaces for F .
Ideally, we would like to claim that any prover refuting
F [fd] had better write down to the blackboard clause
sets on the form C[fd] corresponding to clauses C in
some refutation of the original CNF formula F , and
that if he or she does not, then we can analyze the
refutation as if that is what is happening anyway, just
ignoring the clauses that do not fit into this frame-
work.

To argue this more formally, we need to specify how
sets of clauses in a refutation of F [fd] should be trans-
lated to clauses in a purported refutation of F . We do
this by devising a way of “projecting” any refutation
of F [fd] down on a refutation of F . These “projec-
tions” are defined in terms of a special kind of “precise
implication” which we describe next. Recall that for
Boolean functions F and G, we say that F implies G,
denoted F |= G, if any truth value assignment satis-
fying F must also satisfy G.

Definition 12(Precise implication and pro-
jected clauses (informal)). Suppose that D is a
set of clauses over variables in V arsF [fd] and that P
and N are (disjoint) subset of variables of F . If any
truth value assignment satisfying D must also satisfy∨

x∈P fd(~x)∨∨
y∈N ¬fd(~y) but this is not the case for

strict subsets P ′ $ P or N ′ $ N , we say that the
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clause set D implies
∨

x∈P fd(~x) ∨ ∨
y∈N ¬fd(~y) pre-

cisely.

Let us write any clause C as C = C+ ∨ C−, where
C+ =

∨
x∈Lit(C) x is the disjunction of the positive

literals in C and C− =
∨

ȳ∈Lit(C) ȳ is the disjunction
of the negative literals. Then we say that D projects
C if D implies

∨
x∈C+ fd(~x)∨∨

ȳ∈C− ¬fd(~~y) precisely,
and we write projFD to denote the set of all clauses
that D projects on yF .

Given this definition, we would like
to take any resolution refutation πf =
{D0,D1, . . . ,Dτ} of F [fd] and argue that
π = {projF (D0), projF (D1), . . . , projF (Dτ )} is
(essentially) the resolution refutation of F that we
are looking for.

It is not hard to see that for a “well-behaved” res-
olution prover refuting F [fd] using a resolution refu-
tation π of the original formula F as a template but
substituting the clause set C[fd] for every clause C ap-
pearing on the blackboard, applying the projection in
Definition 12 at every step in the derivation will give
us back the refutation π of F that we started with
(the reader can check that this is the case for instance
for the clause set in (1)). What is more remarkable
is that this projection of refutations of F [fd] always
works no matter what the prover is doing, in the sense
that the result is always a resolution refutation of the
original formula F and this projected refutation does
not only (essentially) preserve length, which is not too
complicated to show, but also space. We refer to [16]
for the formal statements and proofs.

3.2 Substitution space theorem for
R(k)

The proof of the first part of Theorem 3 is again
reasonably straightforward and resembles our proof of
the substitution theorem for the standard resolution
proof system. For the second part, however, we re-
quire a result, described next, that bounds the num-
ber of variables appearing in a minimally unsatisfiable
k-DNF of a given size. Since this result addresses a
combinatorial problem that appears to be interesting
(and challenging) in its own right, we describe it in
some detail below.

We start by recalling that a set of 1-DNF formulas,
i.e., a CNF formula, is said to be minimally unsatisfi-
able if it is unsatisfiable but every proper subset of its
clauses is satisfiable, and try to generalize this defini-

tion to the case of k > 1. Perhaps the first, naive, idea
how to extend this notion is to define D to be mini-
mally unsatisfiable if it is unsatisfiable but all proper
subsets of k-DNF formulas in D are satisfiable. This
will not work, however, and the set of formulas

{x,
(
(x ∧ y1) ∨ (x ∧ y2) ∨ · · · ∨ (x ∧ yn)

)} (2)

shows why this approach is problematic. The set of
formulas (2), which consists of two 2-DNF formulas, is
unsatisfiable but every proper subset of it is satisfiable.
However, the number of variables appearing in the set
can be arbitrarily large so there is no way of bounding
|V ars(D)| as a function of |D|.

A more natural requirement is to demand minimal-
ity not only at the formula level but also at the term
level, saying that not only do all DNF formulas in the
set have to be there but also that no term in any for-
mula can be shrunk to a smaller, weaker term without
the set becoming satisfiable. Luckily enough, this also
turns out to be the concept we need for our applica-
tions. The formal definition follows next.

Definition 13(Minimal implication and mini-
mally unsatisfiable k-DNFsets). Let D be a set
of k-DNF formulas and let G be a formula. We say
that D minimally implies G if D ² G and furthermore,
replacing any single term T appearing in a single DNF
formula D ∈ D with a proper subterm of T , and call-
ing the resulting DNF set D′, results in D′ 6² G. If G
is unsatisfiable we say D is minimally unsatisfiable.

To see that this definition generalizes the notion of
a minimally unsatisfiable CNF formula, notice that
removing a clause C ′ from a CNF formula F is equiv-
alent to replacing a term of C ′, which is a single lit-
eral, with a proper subterm of it, which is the empty
term. This is because the empty term evaluates to
1 on all assignments, which means that the resulting
clause also evaluates to 1 on all assignments and hence
can be removed from F . With this definition in hand,
we are thus interested in understanding the following
problem:

Given a minimally unsatisfiable set of m
k-DNF formulas, what is an upper bound
on the number of variables that this set
of formulas can contain?

As was noted above, for k = 1 the set D is equivalent to
a CNF formula, because it is a set of disjunctions of lit-
erals, and we have the following “folklore” result which
seems to have been proved independently on several
different occasions (see, for instance, [1,8,21,32]).
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Theorem 14. If D is a minimally unsatisfiable CNF
formula, then |V ars(D)| < D.

Theorem 14 has a relatively elementary proof based
on Hall’s marriage theorem, but its importance to ob-
taining lower bounds on resolution length and space
is hard to overemphasize. For instance, the seminal
lower bound on refutation length of random CNFs
given by Chvátal and Szemerédi in [21] makes crucial
use of it, as does the proof of the “size-width trade-off”
of [17]. Examples of applications of this theorem in
resolution space lower bounds include [4,12,14,35,38].

For sets of k-DNF formulas with k > 1, we are
not aware of any upper or lower bounds on minimally
unsatisfiable sets prior to our work. The main tech-
nical result that we need in order to establish the
k-DNF resolution space hierarchy is the following ex-
tension of Theorem 14 to the case of k > 1.

Theorem 15. Suppose that D is a minimally unsat-
isfiable k-DNF set. Then the number of variables in
D is at most |V ars(D)| 6 (k|D|)k+1.

Proof sketch. Let us sketch the proof for k = 2. Sup-
pose that we have a 2-DNF set D with m formulas
mentioning Ω(m3) variables. Then there is at least
one 2-DNF formula D∗ mentioning Ω(m2) variables.
By the definition of minimality, the set D\{D} is sat-
isfiable. Let α be some minimal partial assignment
fixing D \ {D} to true, and note that α needs to set
at most 2(m− 1) variables (at most one 2-term per
formula).

Consider the 2-terms in D∗. If there are 2m terms
over completely disjoint pairs of variables, then there
is some 2-term a ∧ b untouched by α. If so, α can
be extended to a satisfying assignment for all of D,
which is a contradiction. Hence there are at most
O(m) terms over disjoint sets of variables.

But D∗ contains Ω(m2) variables. By counting (and
adjusting the implicit constant factors), there must
exist some literal a∗ in D∗ occuring in a lot of terms
(a∗ ∧ b1) ∨ (a∗ ∧ b2) ∨ · · · (a∗ ∧ b2m). Again by mini-
mality, there is a (partial) truth value assignment α′

satisfying D\{D} and setting a∗ to true. (To see this,
note that shrinking, for instance, a∗ ∧ b1 to a∗ should
make the whole set satisfiable). But if we pick such
an α′ of minimal size, there must exist some bi that
is not falsified and we can extend α′ to a satisfying
assignment for a∗ ∧ bi and hence for the whole set.
Contradiction. ¤

We want to point out that in contrast to Theorem
14, which is exactly tight (consider the set

{∨n
i=1xi, ¬x1, ¬x2, . . . , ¬xn

}
(3)

of n+1 clauses over n variables), there is no matching
lower bound on the number of variables in Theorem
15. The best explicit construction that we were able
to obtain, stated next, has number of variables only
linear in the number of k-DNF formulas (for k con-
stant), improving only by a factor k2 over the bound
for CNF formulas in Theorem 14.

Lemma 16. There are minimally unsatisfiable k-
DNFAets D with |V ars(D)| > k2(|D| − 1).

Proof sketch. Consider any minimally unsatisfiable
CNF formula consisting of n + 1 clauses over n vari-
ables (for instance, the one in (3)). Substitute every
variable xi with

(
x1

i ∧ x2
i ∧ · · · ∧ xk

i

)

∨ (
xk+1

i ∧ xk+2
i ∧ · · · ∧ x2k

i

)

∨ · · ·
∨ (

xk2−k+1
i ∧ xk2−k+2

i ∧ · · · ∧ xk2

i

)
(4)

and expand every clause to a k-DNF formula. Note
that this is possible since the negation of (4) that we
need to substitute for ¬xi can also be expressed as a
k-DNF formula

∨

(j1,...,jk)∈
[(,1])k×...×[(k2−k+1,k2]

(¬xj1
i ∧ · · · ∧ ¬xjk

i

)
. (5)

It is straightforward to verify that the result is a min-
imally unsatisfiable k-DNF in the sense of Definition
13, and this set has n + 1 formulas over k2n variables.

¤

In our first preliminary report [15] on our results for
k-DNF resolution, we stated that we saw no particu-
lar reason to believe that the upper bound in Theorem
15 should be tight, hinting that Lemma 16 might well
be closer to the truth. Surprisingly to us, this turned
out to be wrong. In a joint work [39] with Razborov,
the second author recently showed that there are min-
imally unsatisfiable k-DNF sets with m formulas and
≈ mk variables, which means that Theorem 15 is tight
up to an additive one in the exponent.

Concluding this section, we remark that the precise
statement required to prove the second part of The-
orem 3 is somewhat more involved than Theorem 15.
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However, the two proofs follow each other very closely.
Again, we refer to the full-length version [16] of this
paper for the details.

4 Concluding Remarks

We end this paper by discussing some open ques-
tions related to our reported work.

Resolution. For the length, width, and clause space
measures in resolution, there are known upper and
lower worst-case bounds that essentially match mod-
ulo constant factors. This is not the case for total
space, however.

Open Question 1. Are there polynomial-size CNF
formulas of width O(1) which require total resolution
refutation space TotSpR(F ` 0) = Ω

(
(size of F )2

)
?

The answer has been conjectured by [4] to be “yes”,
but as far as we are aware, there are no stronger lower
bounds on total space known than those that follow
trivially from corresponding linear lower bounds on
clause space. Thus, a first step would be to show
superlinear lower bounds on total space.

One way of interpreting the results of the current
paper is that time-space trade-offs in pebble games
carry over more or less directly to the resolution proof
system (modulo some technical restrictions that we ig-
nore here). The resolution trade-off results obtainable
by this method are inherently limited, however, in the
sense that pebblings in small space can be seen never
to take too much time by a simple counting argument.
For resolution there are no such limitations, at least
not a priori, since the corresponding counting argu-
ment does not apply. Thus, one can ask whether it
is possible to demonstrate even more dramatic time-
space trade-offs for resolution than those that can be
obtained via pebbling.

To be more specific, we are particularly interested in
what trade-offs are possible at the extremal points of
the space interval, where we can only get polynomial
trade-offs for constant space and no trade-offs at all
for linear space.

Open Question 2. Are there superpolynomial
trade-offs for formulas refutable in constant clause
space?

Open Question 3. Are there formulas with trade-
offs in the range space > formula size? Or can every
resolution refutation be carried out in at most linear

space?

We find Open Question 3 especially intriguing.
Note that all bounds on clause space proven so far,
including the trade-offs in the current paper, are in
the regime where the space is less than formula size
(which is quite natural, since by [26] we know the
size of the formula is an upper bound on the mini-
mal clause space needed). It is unclear to what extent
such lower bounds on space are relevant to state-of-
the-art SAT solvers, however, since such algorithms
will presumably use at least a linear amount of mem-
ory to store the formula to begin with. For this reason,
it seems to be a highly interesting problem to deter-
mine what can be said if we allow extra clause space
above linear. Are there formulas exhibiting trade-offs
in this superlinear regime, or is it always possible to
carry out a minimal-length refutation in, say, at most
a constant factor times the linear upper bound on the
space required for any formula? As was noted above,
pebbling formulas cannot help answer these two ques-
tions, since they are always refutable in linear time
and linear space simultaneously by construction, and
since constant pebbling space implies polynomial peb-
bling time.

A final problem related specifically to standard res-
olution is that it would be interesting to investigate
the implications of our results for applied satisfiabil-
ity algorithms.

Open Question 4. Do the trade-off phenomena we
have established in this paper show up “in real life” for
state-of-the-art DPLL based SAT solvers, when run on
the appropriate pebbling contradictions (or variations
of such pebbling contradictions)?

Stronger space separations for R(k). We have
proven a strict separation between k-DNF resolution
and (k+1)-DNF resolution by exhibiting for every
fixed k a family of CNF formulas of size n that re-
quire space Ω

(
k+1

√
n/ log n

)
for any k-DNF resolution

refutation but can be refuted in constant space in
(k+1)-DNF resolution. This shows that the family
of R(k) proof systems form a strict hierarchy with re-
spect to space.

As has been said above, however, we have no reason
to believe that the lower bound for R(k) is tight. In
fact, it seems reasonable that a tighter analysis should
be able to improve the bound to at least Ω

(
k
√

n/ log n
)

and possibly even further. The only known upper
bound on the space needed in R(k) for these formu-
las is the O(n/ log n) bound that is easily obtained for
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standard resolution. Closing, or at least narrowing,
the gap between Ω

(
k+1

√
n/ log n

)
and O(n/ log n) is

hence an open question.

Understanding minimally unsatisfiable sets of
k-DNF formulas. It seems that the problem of get-
ting better lower bounds on space for k-DNF resolu-
tion is related to the problem of better understanding
the structure of minimally unsatisfiable sets of k-DNF
formulas. Although the correspondence is more intu-
itive than formal, it would seem that progress on this
latter problem would probably translate into sharper
lower bounds for R(k) as well. The reason for this
hope is that the asymptotically optimal results for
standard resolution in this paper can in some sense
be seen to follow from (the proof technique used to
obtain) the tight bound for CNF formulas in Theo-
rem 14.

What we are able to prove in this paper is that any
minimally unsatisfiable k-DNF set D (for k a fixed con-
stant) must have at least Ω

(
k+1

√
|D|) variables (The-

orem 15) but the only explicit constructions of such
sets that we where able to obtain had O(|D|) variables
(Lemma 16). As has already been mention, the recent
work [39] unexpectedly improved the lower bound to
roughly O k

√
(|D|). This appears to be a natural and

interesting combinatorial problem in its own right, and
it would be very nice to close the gap between the up-
per and lower bound.

We have the following conjecture, where for simplic-
ity we fix k to remove it from the asymptotic notation.

Conjecture 17. Suppose that D is a minimally
unsatisfiable k-DNF set for some arbitrary but fixed
positive integer k. Then the number of variables in D
is at most O(|D|k).

Proving this conjecture would establish asymptoti-
cally tight bounds for minimally unsatisfiable k-DNF
sets (ignoring factors involving the constant k).

Generalizations to other proof systems. We
have presented a “substitution space theorem” for res-
olution as a way of lifting lower bounds on the num-
ber of variables to lower bounds on (clause) space,
and have then extended this result by lifting lower
bounds on the number of variables in resolution to
lower bounds on formula space in the much stronger
k-DNF resolution proof systems. It is a natural ques-
tion to ask whether our techniques can be extended
to other proof systems as well.

We remark that our translations of refutations of
substitution formulas in some other proof system P
via projection to resolution refutations of the original
formula seem extremely generic and robust in that
they do not at all depend on which derivation rules
are used by P nor on the class of formulas with which
P operates. The only place where the particulars of
the proof system come into play is when we actually
need to analyze the content of the proof blackboard.
As described in the introduction, this happens at some
critical point in time when we know that the black-
board of our translated (projected) resolution proof
mentions a lot of variables, and want to argue that
this implies that the blackboard of the P-proof must
contain a lot of formulas (or possibly some other re-
source that we want to lower-bound in P). Any corre-
sponding result for some other proof system P would
translate into lower bounds for P in terms of lower
bounds on variable space in resolution.
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