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Abstract: For two polynomials f ∈ F[x1, x2, . . . , xn, y] and p ∈ F[x1, x2, . . . , xn], we say that p is a root of f , if
f(x1, x2, . . . , xn, p) ≡ 0. We study the relation between the arithmetic circuit sizes of f and p for general circuits
and algebraic branching programs. An algebraic branching program (ABP) is given by a layered directed acyclic
graph with source σ and sink τ , whose edges are labeled by variables or field constants. It computes the sum
of weights of all paths from σ to τ , where the weight of a path is defined as the product of edge-labels on the
path. For the size of an ABP we count the number of nodes in the underlying graph.
We address the following fundamental question: suppose the polynomial f can be computed by an ABP of size
s. Is the ABP size of every root p of f guaranteed to be bounded by a polynomial in s? For general circuits it is
known that the circuit size of any root p of a polynomial f with circuit size s is at most poly(s, deg(p),m),
where m is the multiplicity of p in f , i.e. m is the largest number such that (p − y)m divides f . This
bound follows from a result about factors of arithmetic circuits independently obtained by Kaltofen [1] and
Bürgisser [2].
In this paper, we study the above question for ABPs for the canonical case where f is assumed to factor as
f = p0 · (p1 − y)(p2 − y) . . . (pr − y), for p0, p1, . . . , pr ∈ F[x1, x2, . . . , xn] with p0 6≡ 0, and where p1, p2, . . . , pr

are pairwise distinct, i.e. all multiplicities are one. Our main result is that for this situation, provided F has
characteristic zero, any root pi can be computed by an ABP of size polynomial in s. This demonstrates an
important special case where the answer to the above mentioned question is affirmative.
To prove the above result, we view the question as a problem of computing eigenvalues. Roughly, the pis are
made to appear as the eigenvalues of some matrix over the field F(x1, x2, . . . , xn) of rational functions. This
problem is then solved by adapting the numerical method of power iteration to our situation. Using power
iteration makes the computation amenable to be coded out as an ABP, since ABPs can efficiently compute
iterated matrix multiplication.
In this work we adapt techniques which are well-known from numerical analysis, for use in the area of arithmetic
circuit complexity. Staying with this theme, we also improve the above mentioned poly(s, deg(p),m) bound for
the circuit size of a root p of a polynomial f computed by an (unrestricted) arithmetic circuit of size s. Rather
than applying [1, 2], we develop a discrete analogue of Newton’s Method.

Keywords: arithmetic circuits, derandomization, polynomial identity testing, root extraction, numerical
analysis.

1 Introduction

For informal use, let us say an arithmetic circuit
class C is closed under taking roots, if roots of (fam-
ilies of) polynomials in C also belong to the class C.
∗This work was conducted while the author was a Postdoc-

toral Fellow at the Institute for Theoretical Computer Science of

Tsinghua University, and it was supported in part by the Na-

tional Natural Science Foundation of China Grant 60553001,

61073174, 61033001 and the National Basic Research Program

of China Grant 2007CB807900, 2007CB807901.

Important consequences follow for classes that enjoy
this property either completely, or for which a ‘fairly
decent’ root extraction lemma can be proved. Most
notably, such a lemma is a crucial tool for the con-
ditional derandomization of polynomial identity test-
ing (PIT) for the class C. For the latter well-known
problem one is given an arithmetic circuit Φ, and the
problem is to decide whether the polynomial com-
puted by Φ is identical to the zero polynomial or not.
Due to a result independently obtained by Kaltofen [1]
and Bürgisser [2], we know that the class VP of poly
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degree polynomial families computable by poly size
arithmetic circuits is even closed under taking factors,
which implies the closure under taking roots. In their
seminal paper on PIT, Kabanets and Impagliazzo [3]
use this to give a deterministic subexponential time
algorithm for identity testing ‘VP-circuits’, under the
assumption that there exist some explicit polynomial
fn that requires super-polynomial arithmetic circuit
size.

For more restricted classes C, it is interesting to
consider the question whether PIT for C can be
achieved deterministically under any weaker assump-
tions. When using the framework of [3], the situation
where C is closed under taking roots is ideal, since any
loss incurred at the root extraction stage is directly
reflected in the quality of the resulting hardness to
randomness conversion. Examples of research efforts
that follow this approach are the works by Dvir, Sh-
pilka and Yehudayoff [4] and Jansen [5].

In [4] a root extraction lemma is proved for constant
depth arithmetic circuits with O(1) loss in the depth,
that works well under the promise that the computed
polynomials are of low degree. Consequently, a cor-
responding hardness to randomness conversion is ob-
tained that applies to a low degree promise version of
PIT for depth d−O(1) circuits, assuming the existence
of an explicit polynomial that is hard for arithmetic
circuits of constant depth d. For ABPs a root extrac-
tion lemma is proved in [5], again with parameters
working well only for low degree polynomials. Using
this, it is proved that a certain low degree promise
version of PIT for ABPs can be solved deterministi-
cally in subexponential time, assuming some explicit
polynomial is hard for ABPs. In this paper we make
progress towards showing that the arithmetic circuit
class VDET of polynomial families computable by
poly size ABPs is closed under taking roots. The latter
statement, if true, would yield1 a deterministic subex-
ponential time PIT algorithm for VDET, under the
assumption that there exists some explicit family of
polynomials that requires ABPs of super-polynomial
size.

Already implicit in [4, 5] was the use of a discrete
analogue of Newton’s Method. We will revisit this,
to give a self-contained proof of the fact that VP is
closed under taking roots. The resulting argument

1Already if the main result of this paper (Theorem 1) can be
generalized to deal with arbitrary multiplicities, one would ob-
tain this, based on the assumption that there exists an explicit
family of polynomials that requires super-polynomial ABP size
over all fields.

may serve as a conceptual simplification in [3], in the
sense that calling upon the more involved works [1, 2]
is avoided. For ABPs however, it is hard to imagine
that this technique will ultimately lead to an optimal
root extraction lemma. Therefore, in this paper we
take an entirely new approach. We cast the prob-
lem as a task of computing eigenvalues, and adapt the
method of power iteration to our domain. This way,
since ABPs can efficiently compute matrix multipli-
cation, we avoid the explosion in ABP size seemingly
inherent to adaptations of Newton’s Method.

In the continuous domain, given a real s× s matrix
M , say with real eigenvalues λ1 > λ2 > . . . > λs > 0
and a corresponding independent set of unit eigenvec-
tors v1, v2, . . . , vs, a well-known heuristic for finding
an approximation to the largest eigenvalue λ1 is to
apply power iteration. Here, starting with some vec-
tor u that is typically selected at random, writing u
in the eigenbasis as u = a1v1 + a2v2 + . . . + asvs, for
certain scalars ai, one applies a large power of M to
u to obtain Meu = a1λ

e
1v1 + a2λ

ev2 + . . . + asλ
evs.

After normalization, the term a1λ
e
1v1 will be the dom-

inant one, and thus the normalized sum will con-
verge to v1 as e → ∞. Once an approximation ṽ1

to v1 is obtained, one may approximate λ1 by com-
puting, for some nonzero component (ṽ1)`, the ratio
(Mṽ1)`/(ṽ1)`.

For the main development of this paper we will
adapt the method of power iteration to construct small
ABPs for roots of ABPs. Typically, in practice no
good bounds are available for the rate of convergence
of power iteration. It is worth mentioning that in our
adaption we manage to avoid this, as well as several
other crucial issues that arise along the way. We post-
pone a discussion of our techniques to Section 1.2.
This work provides a case study of how standard tools
from numerical analysis can be made available in the
area of arithmetic circuit complexity, and hopefully
stimulates further research into this direction.

1.1 Results

Our main result is the following theorem:

Theorem 1. Let F be a field of characteristic zero.
Let f ∈ F[x1, x2, . . . , xn, y] be a nonzero polynomial
that can be computed by an ABP of size s. Sup-
pose f factors as f = p0(p1 − y)(p2 − y) . . . (pr −
y), where {p0, p1, p2, . . . , pr} ⊂ F[x1, x2, . . . , xn] and
p1, p2, . . . , pr are pairwise distinct. Then every pi has
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an ABP of size at most polynomial 2 in d, r and s,
where d = maxi∈[r],pi 6≡0 deg(pi).

An ABP of size s computes a polynomial for which
both its total degree and the individual degree of any
variable is bounded by s. This implies that in the
above theorem both r and d are at most s. For com-
parison, Lemma 2.10 of [5] yields3 an upper bound
of s · 2O(log2 deg(pi))r4+log deg(pi) for the size of an ABP
for pi.

For our second result, define the function M(d) to
be an upper bound on the size of an arithmetic cir-
cuit for computing the multiplication of two univari-
ate polynomial g and h in F[z] of degree at most d,
given the coefficients of g and h as input variables.
By a result of Cantor and Kaltofen [6], one can take
M(d) = O(d log d log log d), over any field F. For (un-
restricted) arithmetic circuits we have the following
theorem:

Theorem 2. Let F be a field of characteristic zero.
Let f ∈ F[x1, x2, . . . , xn, y] be a polynomial of degree
r > 0 that is computable by an arithmetic circuit of
size s and let p ∈ F[X] be a nonconstant root of f
for y, i.e. f(x1, x2, . . . , xn, p) ≡ 0 and p 6∈ F. Then
p can be computed by an arithmetic circuit of size
O(M(m)M(deg(p)) · deg(p) · s), where m is the mul-
tiplicity of the root p in f .

Due to a Lemma by Gauss (Lemma 1), in the above
situation p is a root of f if and only p − y is an irre-
ducible factor of f in F[x1, x2, . . . , xn, y]. Using [1,
2] to obtain arithmetic circuits for the factor p − y,
as done in [3], yields a circuit for the root p of size
O(M(deg(p)3m)(s + deg(p) log m)). It can be veri-
fied that our result is an improvement over the bound
obtained this way.

1.2 Outline of the proof of Theorem 1

We roughly follow the following program:

1. Reduction to ‘nice’ polynomials.

The first step in the proof is to show that the gen-

2In this paper our aims are purely theoretical. The expo-
nents of this polynomial are large, i.e. without making efforts
to optimize a bound of O(r2556d84s2160) can be given. To some
extent it is remarkable that a polynomial bound can be given
at all. If f satisfies a certain ‘niceness’ condition the bound
improves somewhat down to O(r396d84s180).

3Note that this lemma is stated for skew circuits, but inspec-
tion of the proof yields the given bound.

eral case of Theorem 1 reduces to the case where
p0 = 1 and the other pis are nonconstant polynomi-
als, with the constant terms p1(0), p2(0), . . . , pr(0)
being distinct nonzero constants. Say αi = pi(0).
Wlog. let us assume that we want to construct an
ABP for p1.

2. Applying homogenization.

We apply a particular kind of homogenization on
the xi variables, using a new variable z. This will
give us an ABP computing f ′ = zc

∏
i∈[r](qi −

y), for some integer c > 0, where qi =
zdpi(x1

z , x2
z , . . . , xn

z ) and d = maxideg(pi). For
α ∈ F, we consider shifting by αzd, by defining
f ′α = f ′|y:=y+αzd =

∏
i∈[r](qi − αzd − y). We want

to exploit the fact that for the shifted polynomials
f ′α2

, f ′α3
, . . . , f ′αr

, since all αis are distinct, the fac-
tor (q1 − αiz

d − y) still contains the monomial zd

of highest z-degree, for every 2 ≤ i ≤ r, whereas
for every other factor this term is dropped in one
of f ′α2

, f ′α3
, . . . , f ′αr

.

3. Use the completeness of the determinant to obtain
an eigenvalue problem.

For any α ∈ F, using the completeness of the de-
terminant, we will obtain that f ′α = det(Pα − yQ),
for some {0,−1}-valued matrix Q and a nonsin-
gular matrix Pα, whose entries are products of xi

variables and powers of z. Let Mα = Adj(Pα)Q,
where Adj(Pα) denotes the adjugate of Pα, i.e.
P−1

α = Adj(Pα)/ det(Pα). It is not too difficult
to see that for each i, λi := det(Pα)

qi−αzd is an eigenvalue
of Mα, over the field of rational function F(X, z).

4. Selecting a starting point u, and applying power
iteration.

Say for i ∈ [r], vi is an eigenvectors correspond-
ing to λi, whose entries are polynomials. We take
the matrix V = [v1, v2, . . . , vr, ei1 , . . . , eis−r

], where
we extend with some standard basis vectors eij

to make V nonsingular. For an arbitrary point
u ∈ Range(M0), writing u = a1v1 + . . . + arvr,
means we have to apply V −1 = Adj(V )/det(V )
to u in order to express u in the different basis.
Generally this is problematic, since then we ob-
tain ais that are rational functions, rather than
polynomials. To stress, at any point of our com-
putation, we want to make sure that we are com-
puting with polynomials, so that at the end we can
obtain (a multiple of) v1 based on considering z-
degrees of terms. We will spend an important
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part of the proof showing that det(V )2 can actu-
ally be computed without direct knowledge of the
vis. Hence we can scale up the above ais by a
factor of det(V )2, to ensure they are elements of
F[X, z], and bootstrap the computation. In order
to show this, we have to normalize our ABPs to
some deliberately chosen standard form. Then we
can provide a closed form for each vi in terms of
the normalized ABP and the (unknown) value qi.
It turns out that for eigenvectors v1, v2, . . . , vr ob-
tained this way, det(V )2 = zc′ ∏

1≤i<j≤n(qi − qj)2,
for some integer c′ > 0. Since

∏
1≤i<j≤n(xi − xj)2

is a symmetric polynomial, we know it is express-
ible in terms of the elementary symmetric polyno-
mials Sj

r(x1, . . . , xr) =
∑

I⊂[r]

∏
i∈I xi, due to the

fundamental theorem on symmetric polynomials.
Eventhough we cannot directly compute the qis,
Sj

r(q1, . . . , qr) equals the coefficient of (−y)r−j in f ′

(ignoring the factor zc). We will see that therefore
it can be obtained by some standard circuit ma-
nipulations. This way we obtain a relatively small
ABP for det(V )2.

The next step is to apply power iteration.
We construct a (multi-output) ABP computing
Me

αr
. . . Me

α3
Me

α2
u, where e is some appropriately

selected large integer. The next crucial part of the
proof is to show that when changing α, only the
eigenvalues of Mα change, but that the vis remain
to be a valid set of eigenvectors. This will allow us
to finally arrive at the following expression: u′ :=

Me
αr

. . . Me
α3

Me
α2

u =
∑

i∈[r] ai

∏r
j=2

(
det(Pαj

)

qi−αjzd

)e

vi.

We will have that u′ is a vector of polynomials, since
we ensure that every ai ∈ F[X, z], and that every
vj and Mα only contains polynomial entries. We
will show that from the vector u′, we can separate
out a multiple of the eigenvector v1 by discarding
terms that have z-degree larger than some thresh-
old. To keep e reasonable we will need to provide
good bounds on the degrees of the ais and entries
of the eigenvectors vj . Next, we can compute q1

by applying M0 once more and doing a division.
For the latter, we use a recent result by Kaltofen
and Koiran [7] to perform the (exact) division of
two ABPs. Finally, the ABP for p1 is obtained by
setting z = 1 in the ABP for q1.

2 Preliminaries

Let F be a field of characteristic zero. Let X =
{x1, x2, . . . , xn} be a set of indeterminates. Let G de-
note the field of rational functions F(X, z). For a poly-

nomial f ∈ F[X, y] and p ∈ F[X], f|y=p denotes the
polynomial obtained by substituting p for y in f . In
case f|y=p ≡ 0, we say that p is a root of f for y. Recall
the following lemma by Gauss:

Lemma 1. (Gauss). Let f ∈ F[X, y] be a nonzero
polynomial, and let p ∈ F[X] be a root of f for y.
Then p − y is an irreducible factor of f in the ring
F[X, y].

In the above situation, the multiplicity of the root
p is defined to be the largest number m such that
(p− y)m divides f . The Vandermonde determinant is
the polynomial (x1, x2, . . . , xn) =

∏
1≤i<j≤n(xi − xj).

For two polynomials f and g, if there exists a poly-
nomial h such that f = gh, we say g divides f ,
and that the division f/g is exact. Total degree of
a nonzero polynomial f is denoted by deg(f). The
maximum degree of a variable xi in a monomial of a
nonzero polynomial f is denoted by degxi

(f). For a
nonzero vector v of polynomials, we define deg(v) =
maxj,vj 6≡0 deg(vj) and degxi

(v) = maxj,vj 6≡0 degxi
(vj).

For a polynomial f ∈ F[X], we denote by [f ]=i, or sim-
ply f=i, the homogeneous component of degree i. Sim-
ilarly, we use the notations f≤i, f≥i, [f ]≤i and [f ]≥i.
We will also use this notation for vectors of polyno-
mials. For example, (f, g, h)≤i = (f≤i, g≤i, h≤i). At
a few occasions we will also use the notation f≤zi,
for f ∈ F[X, z]. This is defined analogously, but
now using the individual degree measure degz instead
of total degree measure deg. For a nonzero polyno-
mial f , mindeg(f) is the minimum i such that f=i is
nonzero. Similarly, we define mindegxj

(f) to be the
minimum i such that xi

j appears in a monomial of f .
We extend this to any nonzero vector v of polynomi-
als, by letting mindeg(v) = minj,vj 6≡0 mindeg(vj) and
mindegxi

(v) = minj,vj 6≡0 mindegxi
(vj). Given an in-

teger d ≥ 0 and a variable z, for a polynomial f of
degree ≤ d, the homogenization of f to degree d using
the variable z, is the polynomial zdf(x1

z , x2
z , . . . , xn

z ).

For a matrix M , we denote by M [[i, j]] the matrix
obtained by removing row i and column j. Let us
denote by M [i, j] the matrix obtained from M by set-
ting all entries in row i and column j to 0, except
for entry Mi,j , which is set to 1. Using Laplace ex-
pansion along row i of M [i, j] one immediately con-
cludes that the following holds: for any matrix M ,
det(M [i, j]) = (−1)i+j det(M [[i, j]]). For a s × s ma-
trix M , Adj(M) denotes the s× s adjugate matrix of
M , defined by Adj(M)ij = det(M [j, i]). For any ma-
trix M , MAdj(M) = Adj(M)M = det(M)I, where I
denotes the identity matrix.
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An arithmetic circuit Ψ over variables X and field
F is given by a directed acyclic graph whose nodes of
in-degree larger than zero are labeled by {+,×}, and
with other nodes labeled by elements of X ∪ F. At
each node g of Ψ we have associated a polynomial in
F[X] computed by g, which is defined in the standard
manner. The output of Ψ is the polynomial computed
by some designed output gate. For the size of Ψ we
count the number of edges. The size of a polynomial f ,
denoted by s(f), is the size of the smallest arithmetic
circuit computing f . We let VP stand for the class
of polynomial families (fn) for which there exists a
polynomial p(n) such that deg(fn) ≤ p(n) and s(fn) ≤
p(n).

An algebraic branching program (ABP) over X and
F is a 4-tuple Φ = (G,w, σ, τ), where G = (V, E) is
a weighted directed acyclic graph for which the ver-
tex set V can be partitioned into levels L0, L1, . . . , L`,
where L0 = σ and L` = τ . Vertices σ and τ are called
the source and sink of Φ, respectively. Edges may only
go between consecutive levels Li and Li+1. The sub-
graph induced by Li and Li+1 is called a layer of Φ.
The weight function w : E → X ∪ F assigns variables
or field constants to the edges of G. For a path p in G,
we extend the weight function by w(p) =

∏
e∈p w(e).

Let Pi,j denote the collection of all directed paths p
from i to j in G. The program Φ computes the poly-
nomial Φ̂ :=

∑
p∈Pσ,τ

w(p). The size of Φ is defined
to be |V |. For nodes v and w in Φ, Φv,w denotes the
subprogram of Φ with source v and sink w.

We extend the definition to what we call generalized
ABPs as follows. Let z be a new variable. Let W =
{zd · ` : d ≥ 0, ` ∈ X ∪ F}. For generalized ABPs,
we allow any weight w(e) to be an element in W. We
will also consider “multi-output” ABPs. In this case
the last layer of the A consists of several sink nodes
τ1, τ2, . . . , τm. The output of the ABP is given by the
tuple of polynomials (f1, f2, . . . , fm) computed by the
subprograms Aσ,τ1 , Aσ,τ2 , . . . , Aσ,τm

.

ABPs are convenient when dealing with substitu-
tion. It is easily seen that if g can be computed by an
ABP Ag of size sg and f is computed by an ABP Af

of size sf , then f|xi=g can be computed by an ABP of
size O(efsg), where ef = O(s2

f ) is the number of edges
in Af . For the analysis, we define absolute constants
γ1 = 3, γ2 = 5, γ3 = 12. We use a result by Mahajan
and Vinay and a result by Kaltofen and Koiran.

Theorem 3 (See Theorem 2 in [8]). The determinant
of an n×n matrix can be computed by an ABP of size
O(nγ1) with O(nγ2) many edges.

Lemma 2 (See4[7]). Suppose |F| is infinite. Let f, g ∈
F[X] be given that both are computable by ABPs of size
at most s. Assuming the division f/g is exact, then
f/g can be computed by an ABP of size O(sγ3).

The following two lemma’s are proved by the well-
known trick of ‘splitting’ nodes in order to keep track
of degree components.

Lemma 3. Let d ≥ 0 be an integer and z a new vari-
able. Let Φ be an ABP of size s computing the polyno-
mial f ∈ F[X] of degree at most d. Then there exist an
ABP Ψ of size O(ds) computing the homogenization
of f to degree d using the variable z.

Lemma 4. Let d ≥ 0 be an integer and z a new vari-
able. Let Φ be a generalized ABP of size s with e many
edges computing the polynomial f ∈ F[X, z]. Then
there exist an ABP Ψ of size O(ds) and O(de) many
edges computing [f ]≤zd. A similar statement holds for
computing [f ]=zd.

Finally, we use a result by Kaltofen and Singer for
computing formal partial derivatives. We use the no-
tation ∂kf

∂ky
to denote the formal partial derivative of

f of order k w.r.t. the variable y.

Theorem 4 (Theorem 3.1 in [10]). For any integer
k ≥ 0, if f ∈ F[X, y] can be computed by an arith-
metic circuit of size s, then ∂kf

∂ky
can be computed by

an arithmetic circuit of size O(M(k) · s).

3 Reduction to root extraction for
‘nice’ polynomials

Two polynomials p, q ∈ F[X] are said to be in gen-
eral position, if p(0) and q(0) are both nonzero, and
p(0) 6= q(0). A set of polynomials {p1, p2, . . . , pr} is
said to be in general position, if for every i, j ∈ [r] with
i 6= j, pi and pj are in general position. A polynomial
f ∈ F[X, y] is called nice, if f factors as f = (p1 −
y)(p2 − y) . . . (pr − y), where {p1, p2, . . . , pr} ⊂ F[X]
is a set of nonconstant polynomials that is in general
position.

Suppose for the above situation we have a method of
constructing an ABP for any pi that is of size at most
β(r, d, s) for some function β, where s denotes the
ABP size of f and d = maxi deg(pi). We reduce the

4This follows from From Lemma 1 and Lemma 2 in [7]. We
get an extra quadratic blow-up of s, since the DAG we use for
ABPs must be leveled.
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more general case of Main Theorem 1 to root extrac-
tion for nice polynomials with the following lemma.

Lemma 5. Suppose |F| is infinite. Suppose a nonzero
polynomial f ∈ F[X, y] factors as f = p0(p1 −
y)(p2 − y) . . . (pr − y), where {p0, p1, p2, . . . , pr} ⊂
F[X] and p1, p2, . . . , pr are pairwise distinct. If f
can be computed by an ABP of size s, then every
pi has an ABP of size O(β(r, d, O(rγ3sγ3)), where
d = maxi∈[r] deg(pi) and γ3 is the absolute constant
from Section 2.

Proof. By Lemma 4, we have an ABP for the coeffi-
cient of yr in f of size O(rs). This program computes
(−1)rp0. If there are pis that are constant, any of
these can be computed by ABPs with size at most
2. Wlog. assume p1, p2, . . . , pj are constant. Since
j ≤ r ≤ s, it is easily seen we have an ABP of size
O(rs) that computes p0(p1−y)(p2−y) . . . (pj−y). Now
use Lemma 2 to obtain an ABP of size s = O(rγ3sγ3)
computing f̃ = (pj+1−y)(pj+2−y) . . . (pr−y). Hence
at the cost of blowing up the size to O(rγ3sγ3), we
can assume that f is of the form f = (p1 − y)(p2 −
y) . . . (pr−y), where p1, p2, . . . , pr are nonconstant and
pairwise distinct.

Since |F| is infinite, there exists a ∈ Fn such
that for every i, pi(a) 6= 0, and for every i 6= j,
pi(a) 6= pj(a). Namely, we can simply take a nonzero
of the polynomial

∏
i∈[r] pi

∏
i 6=j∈[r](pi − pj). Con-

sider f ′ := f(x1 + a1, x2 + a2, . . . , xn + an, y). We
have that f ′ =

∏r
i=1(pi(x1 + a1, x2 + a2, . . . , xn +

an)− y) =
∏r

i=1(pi(x1 + a1, x2 + a2, . . . , xn + an)≥1 +
pi(a1, a2, . . . , an) − y). Hence f ′ is nice. An ABP
of size O(rγ3sγ3) for f ′ is easily obtained from the
ABP for f . We can then do the root extraction
for the nice polynomial f ′. This gives us an ABP
for any desired pi(x1 + a1, x2 + a2, . . . , xn + an) of
size at most β(r, d, O(rγ3sγ3)) . Next we easily per-
form a modification of this program to realize the
substitution xi := xi − ai, for all i ∈ [r], while
blowing up the size by a constant factor at most.
Hence, we obtain an ABP for pi(x1, x2, . . . , xn) of size
O(β(r, d, O(rγ3sγ3)). ¤

4 Standard form ABPs, Valiant
matrices and homogenizations

Definition 1. Let f ∈ F[X, y] be a polynomial whose
degree in y equals r, and write f =

∑r
i=0 Cr(x)yr.

We say an ABP Φ with source σ and sink τ com-
puting f is in standard form, if it has the following
structure:

• There is a set of distinct nodes {b0, b1, . . . , br},
such that for each i ∈ {0, 1, . . . , r}, there is an
edge from the source σ to bi with label 1. These
are the only edges adjacent to the source.

• There are distinct nodes c0, c1, . . . , cr. The sub-
programs in the set {Φbi,ci

: i ∈ [r]} are disjoint
as graphs. For every i ∈ {0, 1, . . . , r}, the subpro-
gram5 Φσ,ci

computes Ci(x).
• There is a path cr = a0, a1, . . . , ar−1, ar = τ ,

where each edge (ai, ai+1) is labeled with the vari-
able y. These are the only occurrences of y vari-
ables in Φ.

• All remaining edges are labeled with the constant
one. These simply realize that for every 0 ≤ i <
r, there is one single path of weight 1 from ci to
ar−i.

• the length of every path from σ to τ is even.

More generally, if in the above edges not labeled with
y carry labels ∈ W, then we say that Φ is in general-
ized standard form.

The following lemma follows from Lemma 4:

Lemma 6. Let f ∈ F[X, y] be computed by an ABP Φ
of size s, and let r = degy(f). Then f can be computed
by an ABP Ψ in standard from of size O(sr2). This
means in particular that the variable y appears exactly
r times on an edge in Ψ.

Given an ABP Φ of size s computing f , we can
construct a matrix M(Φ) of order s, whose entries are
variables and field elements, such that det(M) = f ,
as done in [11]. Namely, thinking of Φ as a graph,
one adds a loop back from τ to σ with label 1, and
one puts a self loop on all nodes other than σ and τ
with label 1. Let M(Φ) be the6 adjacency matrix of
the weighted graph obtained this way, which we call
the Valiant matrix associated to Φ. Assuming wlog.
that the length of every path from σ to τ in Φ is even,
then det(M(φ)) = f . Rows and columns of M(Φ)
correspond to nodes in Φ. In our notation, we will
use variable names of nodes of Φ to index the matrix
M(Φ), and also do this for s-vectors operated on. For
example, for the standard form ABP Φ for Definition
1, the entry M(Φ)a0a1 equals y. More generally, if
we start with a generalized ABP Φ, we define in a
completely analogous fashion the associated general-

5For a standard form ABP Φbi,ci
and Φσ,ci compute the

same polynomial. For generalized standard form ABPs the com-
puted polynomials differ by a factor of w(σ, bi).

6Wlog. we can assume nodes in Φ always carry a unique
number ∈ [s], which we then use to index columns/rows. This
way, we can truly speak of the matrix M(Φ).
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ized Valiant matrix M(Φ). In this case, M(Φ) contains
elements from W.

Definition 2. Let z be a variable. Given the Valiant
matrix M(Φ) associated to an ABP Φ, we define
its d-homogenization to be the matrix obtained from
M(Φ) by

1. Replacing every variable entry xi by xiz
d−1.

2. Replacing every constant entry c ∈ F by czd.
3. Leaving y variables unchanged.

We denote this matrix by M(Φ), provided it is clear
from the context what d is. Then we can write
M(Φ) = zdM(x1

z , x2
z , . . . , xn

z , y
zd ). For an ABP Φ,

its d-homogenization Φ is the generalized ABP ob-
tained by performing the above replacement operations
(1,2,3) for every edge label.

The following proposition is left as an easy exercise:

Proposition 1. Let Φ be an ABP of size s with source
σ and sink τ . For the case of d-homogenization, we
have that

1. M(Φ) and M(Φ) only differ for nonzero entries
on the diagonal and the ‘loopback’ entry on row τ ,
column σ. For these entries, M(Φ) contains the
field element 1, whereas M(Φ) contains zd.

2. det(M(Φ)) = z(s−`)d det(M(Φ)), where ` equals the
number of layers of Φ.

The following is now easy to prove:

Proposition 2. Suppose Φ is an ABP of size s com-
putes f ∈ F[X, y], where f factors as f =

∏
i∈[r](pi −

y). Let d = maxi deg(pi). Then for d-homogenization
M(Φ) we have that det(M(Φ)) = zd(s−r)

∏
i∈[r](qi −

y), where ∀i ∈ [r], qi = zdpi(x1
z , x2

z , . . . , xn

z ).

Proof.
det(M(Φ))

= det(zdM(Φ)(
x1

z
,
x2

z
, . . . ,

xn

z
,

y

zd
))

= zds det(M(Φ)(
x1

z
,
x2

z
, . . . ,

xn

z
,

y

zd
))

= zdsf(
x1

z
,
x2

z
, . . . ,

xn

z
,

y

zd
)

= zds
∏

i∈[r]

(pi(
x1

z
,
x2

z
, . . . ,

xn

z
)− y

zd
)

= zd(s−r)
∏

i∈[r]

(qi − y).

¤

4.1 A closed form for eigenvectors
related to the Valiant matrix

The following proposition is easily proved using
Laplace expansion:

Proposition 3. Let M be a singular matrix of order
m. For any fixed i, if we define the m-vector v by
taking vj = det(M [i, j]), then Mv = 0.

Next we derive the main lemma of this subsection.

Lemma 7. Let Φ be a generalized ABP of size
s in standard form computing the polynomial f =∑r

i=0 Ci(X, z)yr ∈ F[X, z, y] of degree r in y. Let d be
a bound on the z-degree of edge labels in Φ. Let nodes
a0, b0, c0, a1, b1, c1, . . . , ar, br, cr be given as in Defini-
tion 1, which implies the subprogram Φσ,ci computes
Ci(X, z). Let M(Φ) be the associated generalized stan-
dard form Valiant matrix. Suppose that q ∈ F[X, z] is
such that f|y=q ≡ 0. Let N be the matrix obtained by
setting y = q in M(Φ), i.e. N = M(Φ)|y=q. Suppose
we define the s-vector v by (v)j = det(N [cr, j]), for all
j ∈ [s]. Then the following hold:

1. Nv = 0.
2. degz(det(N [ci, j])) ≤ smax(degz(q), d).
3. ∀j ∈ [r], (v)aj = qr−j · (−1)j+1Cr(X, z).

Proof. We recall the notion of a cycle cover for later
use. A cycle cover C in a directed graph G = (V, E)
with n vertices is a set of disjoint simple cycles
C1, C2, . . . , Ci such that every vertex in G is contained
in some cycle Ci. For weighted G, the weight of a cy-
cle C is taken to be the product of weights of edges in
C. For a simple cycle C we define its sign sgn(C) to
be −1 if C is of even length, and 1 otherwise. For the
cycle cover C, define sgn(C) =

∏
i sgn(Ci).

Observe that det(N) = det(M(Φ)|y=q) = f|y=q ≡ 0.
Hence the first property follows from Proposition 3.
The second property is clear. To verify the last prop-
erty, let j ∈ [r] be arbitrary. Consider the matrix
N = M(Φ)|y=q. Let G be the weighted graph cor-
responding to M(Φ). We can think of the matrix
N [cr, aj ] as the adjacency matrix of a graph H formed
by doing the following to G:

• replacing all y-labels in G by q.
• Removing all edges out of cr, including the self

loop.
• Removing all edges into aj , including the self

loop.
• Adding the edge From cr to aj with label one.
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Then det(N [cr, aj ]) =
∑

C sgn(C)w(C), where the
sum is over all cycle covers in H. Observe that since cr

and aj do not have self-loops, any cycle cover C in H
must include the edge (cr, aj). So the cycle covers are
of the following structure: 1) From the source σ there
is a path to cr, 2) The edge (cr, aj) is taken, 3) r − j
edges with label q are taken, 4) Finally, the loop back
from ar = τ to the source σ is taken, and self-loops
with label 1 are taken for all vertices not included in
above cycle.

All of the above described cycles starting at the
source σ are of the same length. In case j = 1 the
length equals the same ‘big cycle length’ as in M(Φ),
which is odd. For general j, by considering how many
edges we skip with the edge (cr, aj) one can con-
clude that sgn(C) = (−1)j+1. Hence det(N [cr, aj ]) =∑

C sgn(C)w(C) = (−1)j+1
∑

C w(C). The expres-
sion

∑
C w(C) equals the sum of weights of all paths

from σ to τ that go over (cr, aj). Since these paths
all go over cr, this sum factors as Cr(X, z) (weight of
all paths from σ to cr) times qr−j (weights of path
“(cr, aj), followed by going from aj to τ”). ¤

5 Proof of the main theorem

Lemma 8. Let f ∈ F[X, y] be a nice polynomial of
degree r > 1 computed by a standard form ABP Φ
of size s. Suppose f factors as f =

∏
i∈[r](pi − y),

where {p1, p2, . . . , pr} ⊂ F[X] is a set of noncon-
stant polynomials in general position. Then any pi

can be computed by an ABP of size O((r3d7s12+γ1 +
r6+γ2d5s7)γ3), where d = maxi∈[r] deg(pi) and γ1, γ2

and γ3 are the absolute constants introduced in
Section 2.

Proof. Wlog. we will show the method for obtaining
p1.

5.1 Towards computing eigenvectors

Consider the associated Valiant matrix M(Φ). Let
M(Φ) be the d-homogenization of M(Φ). Note that
f|y=0 6≡ 0. Write M(Φ) = A − yB, by taking B to
have -1 precisely in the places where M(Φ) has y’s
and zeros everywhere else. Then f = det(A − yB).
We have the following two properties:

1. In each row/column there is at most one -1, and
the number of -1s in B equals r.

2. A is invertible over F(X).

Let qi = zdpi(x1
z , x2

z , . . . , xn

z ). Each polynomial qi

is homogeneous of degree d. Restricting our atten-
tion to degrees in z only, we see that the original con-
stant term pi(0) of pi is mapped to the term pi(0)zd

in qi with largest z-degree. Let αi = coef(qi, z
d).

We have that {α1, α2, . . . , αr} is a set of r distinct
nonzero values from F. Note that s ≥ r. Define
f0 = zd(s−r)(q1 − y)(q2 − y) . . . (qr − y). More gen-
erally, for any α ∈ F, define fα = (f0)|y:=y+αzd .
Then fα = zd(s−r) · ∏i∈[r](qi − αzd − y). Let R =
zdA(x1

z , x2
z , . . . , xn

z ), and Q = B.

Lemma 9. The following statements hold:

1. R− yQ = M(Φ).
2. ∀α ∈ F, fα = det(R− αzdQ− yQ).
3. R is nonsingular.

Proof. The first property is clear. For the second
property, note that Proposition 2 gives that f0 =
det(M(Φ)). So f0 = det(R − yQ), by the first prop-
erty. Hence fα = det(R − yQ)y:=y+αzd = det(R −
αzdQ− yQ). The third property follows from the sec-
ond property. Namely, (f0)|y=0 = det(R). It must be
that (f0)|y=0 6= 0, since otherwise qi = 0, for some i.
However, this means that pi = 0, which is a contra-
diction. ¤

Let ` be the number of layers of Φ. Note that s >
` > r. Define for any α ∈ F, fα = fα/zd(s−`). Then
fα = zd(`−r) · ∏i∈[r](qi − αzd − y). Let Φ be the d-
homogenization of Φ. Note that Φ is in generalized
standard from. Observe, that Q does not have nonzero
entries on its diagonal or on the ‘loopback’ entry on
row τ , column σ, since in the standard form nodes
labeled with the variable y do not appear on self-loops
or the loopback edge from τ to σ. By Proposition 1,
we can write M(Φ) = P − yQ, where P is obtained
from R by setting all nonzero diagonal entries and the
‘loopback’ entry (τ, σ) to the field element 1.

Corollary 1. We have the following two properties:

1. For all α ∈ F, det(P − αzdQ− yQ) = fα.
2. For every α ∈ F, P − αzdQ is nonsingular.

Proof. From Proposition 1, it follows that f0 =
det(M(Φ)) = det(P − yQ). This readily gives the
first stated property. From this we conclude that
det(P − αzdQ) = (fα)|y=0. If (fα)|y=0 is zero, then
there exists i such that qi − αzd equals zero. This
implies pi was a constant polynomial, which is a con-
tradiction. ¤
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Note that Φ computes f0.

Lemma 10. Let nodes {ai, bi, ci : i ∈ [r]} in Φ be
given as in Definition 1. Let Ci(X, z) be the polyno-
mial computed by the subprogram Φσ,ci

. Clearly, we
have that f0 =

∑r
i=0 Ci(X, z)yi. For all i ∈ [r], we

define the column vector vi by letting for every j ∈ [s],
(vi)j = det(Nqi [cr, j]), where Nqi = Nqi = P − qiQ.
Then the following hold:

1. For every i ∈ [r], Nqivi = 0.
2. For every i ∈ [r], degz(vi) ≤ sd.
3. There exist standard basis vectors ei1 , ei2 , . . . , eis−r

such that for V := [v1, v2, . . . , vr, ei1 , ei2 , . . . , eis−r ],
det(V ) = (±1) · zd(`−r)r ·Vandet(q1, q2, . . . , qr).

4. Vandet(q1, q2, . . . , qr)2 can be computed by an ABP
of size O(r5+γ2ds), where γ2 is the absolute con-
stant introduced in Section 2.

Proof. The first and second item immediately follow
from Lemma 7, Items 1 and 2. Note that Cr(X, z) =
coef(yr, f0) = (−1)rzd(`−r). By Lemma 7, Item 3,
up to reordering of rows and multiplying rows with
the field element −1, the matrix V ′ = [v1, v2, . . . , vr]
consisting of the r column vectors v1, v2, . . . , vr con-
tains the r × r matrix zd(`−r) · U as a submatrix on
rows in the set J = {aj : j ∈ [r]}, where U is
the Vandermonde matrix (qj

i )0≤j≤r−1,1≤i≤r. Choos-
ing ei1 , ei2 , . . . , ein−r to be an independent set of vec-
tors that is zero on rows indexed by J gives the third
property. The proof of the fourth property we treat
in the next subsection. ¤

5.2 A small ABP for computing
Vandet (q1, q2, . . . , qr)

2

This subsection is dedicated to proving Item 4 of
Lemma 10. Define the polynomial

Ti(x1, x2, . . . , xr) = xi
1 + xi

2 + . . . + xi
r.

We use the fact7 that

det




T0 T1 . . . Tr−1

T1 T2 . . . Tr

...
Tr−1 Tr . . . T2r−2


 (1)

= Vandet(x1, x2, . . . , xr)2. (2)

The strategy is to express each Ti as a ‘small’ formula

7This follows by multiplying the Vandermonde matrix with
nodes x1, x2, . . . , xr by it transpose.

of Sj
r(x1, x2, . . . , xr), where Sj

r is the elementary sym-
metric polynomial in r variables of degree j, i.e.

Sj
r(x1, x2, . . . , xr) =

∑

I⊂[r],|I|=j

∏

i∈I

xi.

It is well-known that the Tis and Sj
rs are related

through the Newton Identities.

At first sight it may look like we have run into a
circular argument. How do we plug in the qis? This
bootstrapping problem is resolved by observing that,
if we succeed in the above8, regardless of not having
small ABPs for the qis, we readily have small ABPs for
any Sj

r(q1, q2, . . . , qr). Namely, consider the following
remark and subsequent derivation:

Remark 1. For every j, Sj
r(p1, p2, . . . , pr) equals

the coefficient of yr−j of f modulo a factor of ±1.
Hence an ABP Φj computing Sj

r(p1, p2, . . . , pr) of size
at most s is easily obtained from the standard form
ABP Φ.

Say that Φj computes the polynomial Dj(X, z).
We conclude that we have an ABP Ψj computing
Sj

r(q1, q2, . . . , qr) of size O(rds) as follows:

Sj
r(q1, q2, . . . , qr) =

Sj
r(zdp1(

x1

z
, . . . ,

xn

z
), . . . , zdpr(

x1

z
, . . . ,

xn

z
)) =

zdjSj
r(p1(

x1

z
, . . . ,

xn

z
), . . . , pr(

x1

z
, . . . ,

xn

z
)) =

zdj(±1) ·Dj(
x1

z
, . . . ,

xn

z
).

Note that the degree of Dj is at most dj. So
zdjDj(x1

z , x2
z , . . . , xn

z ) is just the homogenization of Dj

to degree dj. Applying Lemma 3 to Φj yields the re-
quired ABP Ψj .

5.2.1 A formal power series identity
related to the Newton identities

Let w be an new variable. We have the following
lemma:

Lemma 11. Provided the characteristic of F is
zero, we have the following identity in the ring of
formal power series F[[X]] :

∑
`≥1

1
` (

∑r
j=1(−1)jSj

r

(x1, x2, . . . , xr)wj)` =
∑

n≥1
−wn

n Tn(x1, x2, . . . , xr).

Proof. We recall the definitions of the formal power se-
ries (FPS) exp(w) and log(1−w). These are given by

8In [12] the converse is achieved to get small depths formulas

for Sj
r .
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exp(w) =
∑

n≥0
wn

n! . and log(1 − w) = −∑
n≥1

wn

n .
We will use that exp(log(1 − wxj)) = 1 − wxj .
Hence

∏

j∈[r]

(1− wxj)

=
∏

j∈[r]

exp(log(1− wxj))

= exp(
∑

j∈[r]

log(1− wxj))

= exp(−
∑

j∈[r]

∑

n≥1

(wxj)n/n)

= exp(−
∑

n≥1

Tn(x1, x2, . . . , xr)wn/n)

Hence, by multiplying out the l.h.s. we get that

r∑

j=1

(−1)jSj
n(x1, x2, . . . , xr)wj =

exp(−
∑

n≥1

Tn(x1, x2, . . . , xr)wn/n)− 1.

Now we use that for g(w) := −∑
n≥1 Tn(x1, x2,

. . . , xr)wn/n, it holds that log(1 + (exp(g(w))− 1)) =
g(w). Thus applying log(1 + w) to both sides of the
above equation yields that

−
∑

n≥1

Tn(x1, x2, . . . , xr)wn/n =

log(1−
r∑

j=1

(−1)jSj
n(x1, x2, . . . , xr)wj) =

∑

`≥1

1
`
(

r∑

j=1

(−1)jSj
n(x1, x2, . . . , xr)wj))`.

¤

In the following, we truncate the expression on the
l.h.s. in the above lemma, discarding terms that can-
not possibly contribute to the coefficient of wi. Then
we do some circuit manipulations to extract the coeffi-
cient of wi, and this way we obtain an ABP computing
Ti in terms of the Sj

rs.

Proposition 4. Let u1, u2, . . . , ur be a set of
new variables. For any i ∈ [r] the following
statements are true. Let E(u1, u2, . . . , ui, w) =∑

1≤`≤i
1
` (

∑i
j=1(−1)jujw

j)`. Then

1. There exists an ABP Γ(u1, u2, . . . , ui, w) with O(i3)
many edges computing E.

2. There exists an ABP Γ′(u1, u2, . . . , ui) with O(i4)
many edges computing the coefficient of wi in E.

3. Say Γ′ computes the polynomial E′. Then

E′(S1
r (x), S2

r (x), . . . , Si
r(x))

= −Ti(x1, x2, . . . , xr)/i.

Proof. The first item is left as an easy exercise. Then
second item then follows by applying Lemma 4. The
last item follows from Lemma 11. ¤

5.2.2 Putting it together

By Proposition 4,

E′(S1
r (q1, . . . , qr), . . . , Si

r(q1, . . . , qr))
= −Ti(q1, . . . , qr)/i.

By Remark 1 and comments thereafter, we conclude
that for any i ∈ [r], we have an ABP computing
Ti(q1, . . . , qr) of size O(r5ds). The r × r determinant
can be computed by an ABP with O(rγ2) many edges
by Theorem 3. Hence using Equation (2) we obtain
an ABP for computing Vandet(q1, q2, . . . , qr)2 of size
O(r5+γ2ds). ¤

5.3 Selecting a good starting vector u

Let M0 = Adj(P )Q, and let s × s matrix V =
[v1, v2, . . . , vr, ei1 , ei2 , . . . , eis−r

] be given by Lemma
10. The set {M0v : v ∈ Gs} we denote by Range(M0).
Consider the following proposition:

Proposition 5. Working over the field G, we have

1. For every i ∈ [r], vi is an eigenvector of M0 corre-
sponding to the eigenvalue det(P )

qi
.

2. v1, v2, . . . , vr form a basis of Range(M0).

Proof. By Corollary 1, the polynomials q1, q2, . . . , qr

are precisely all the solutions for y of the equation
det(P − yQ) ≡ 0. For a polynomial q, we have that
det(P − q · Q) ≡ 0 ⇔ ∃v ∈ Gs 6= ~0, such that Pv =
q · Qv. Lemma 10 shows that for every i ∈ [r], (P −
qiQ)vi = 0. Due to Item 2 of Corollary 1, Adj(P ) is
nonsingular. Hence this is equivalent to (det(P )I −
qiM0)vi = 0. Since qi 6≡ 0, we can rewrite this as
(det(P )

qi
I − M0)vi = 0. Hence vi is an eigenvector of

M0 corresponding to eigenvalue det(P )
qi

. Lemma 10
gives that v1, v2, . . . , vr are independent vectors. Note
that rank(Q) = r. Since Adj(P ) is nonsingular, we
have that rank(M0) = rank(Q) = r. Hence it must
be that v1, v2, . . . vr form a basis of Range(M0). ¤

The following lemma now follows easily:
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Lemma 12. ∃i ∈ [s] such that det(V )2M0ei = a1v1 +
a2v2 + . . . + arvr, where 1) ∀i, ai ∈ F[X, z], 2) a1 6= 0,
and 3) ∀i, degz(ai) ≤ d3s5.

Proof. By Item 2 of Proposition 5, v1, v2, . . . , vr forms
a basis of range(M0). Hence for every ei, we can
write det(V )2M0ei = a1,iv1 + a2,iv2 + . . . + ar,ivr, for
certain a1,i, a2,i, . . . , ar,i ∈ G. Suppose that for ev-
ery i ∈ [s], a1,i = 0. This means that range(M0) ⊆
span(v2, . . . , vr), i.e. rank(M0) ≤ r−1. This is a con-
tradiction, as we observed before that rank(M0) = r.
Now let i be such that a1,i 6= 0. The coefficients
a1,i, a2,i, . . . , ar,i can be obtained as the first r com-
ponents of the vector V −1 det(V )2M0ei = det(V ) ·
Adj(V )M0ei. Note that this implies all ai are in
F[X, z], as all of V, Adj(V ) and M0 only have poly-
nomial entries. The z-degrees of entries in Adj(V ),
and also degz(det(V )), can be bounded by ds2, since
entries of V have z-degree at most sd due to Item
2, Lemma 10. Furthermore, d bounds the z-degrees
of entries of P . So Adj(P ) has entries of z-degrees
bounded by sd. Since Q is a matrix with elements in
{0,−1}, this implies the entries of M0 have degrees
bounded by sd. This gives the required bound on the
degrees of the ais. ¤

Let i be given by the above lemma, and fix the vec-
tor u = det(V )2M0ei. This vector will be the starting
point for applying power iteration. To stress, this is an
element of F[X, z]s, since V , M0 and ei only contain
polynomial entries.

Lemma 13. u can be computed by a multi-output gen-
eralized ABP of size O(s1+γ1 + r5+γ2ds).

Proof. By Lemma 10, we have an ABP B1 of size
O(r5+γ2ds) computing the polynomial det(V )2. M0ei

is the ith column of M0 = Adj(P )Q. Note that Q is
a projection. Therefore M0ei equals some column of
Adj(P ). Each entry of Adj(P ) can be computed by
Theorem 3 by a generalized ABP of size O(sγ1). This
way we obtain a multi-output generalized ABP B2

computing M0ei of size O(s1+γ1). Putting B1 and B2

in series gives the required multi-output generalized
ABP. ¤

5.4 Applying power iteration

Now we are ready to start applying power iter-
ation in order to isolate the single eigenvector v1

and consequently find the corresponding eigenvalue.
We have that u = a1v1 + a2v2 + . . . + arvr, for
certain ai ∈ F[X, z], as given by Lemma 12. To-

gether with Lemma 10, we can bound for any i,
degz(ai)+degz(vi) ≤ d3s5 +ds. For any α ∈ F, define
Pα = P −αzdQ, and Mα = Adj(Pα)Q. Note this defi-
nition coincides with previously defined M0. We have
the following straightforward proposition:

Proposition 6. ∀α ∈ F, Pαvi = (qi − αzd) ·Qvi.

First we consider what happens when we apply Mα

to one of the eigenvectors v1, v2, . . . , vr.

Proposition 7. ∀i ∈ [r], e ≥ 1, Me
αvi =

(
det(Pα)
(qi−αzd)

)e

·
vi, and the entries of Mαvi are in F[X, z].

Proof. Since Pαvi = (qi − αzd) · Qvi, we have that
det(Pα)vi = Adj(Pα)Pαvi = Adj(Pα)(qi−αzd)·Qvi =
(qi − αzd)Mαvi. Hence, since qi − αzd 6≡ 0, we can
write Mαvi = det(Pα)

(qi−αzd)
vi. This proves the case e = 1,

from which the general case follows trivially. The
statement regarding the entries of the vector Mαvi

clear, since the entries of vi and Mα both lie in
F[X, z]. ¤

More generally, we have the following statement.

Proposition 8. Given α2, α3, . . . , αr ∈ F, for all
i ∈ [r], e ≥ 1 we have that Me

αr
. . . Me

α3
Me

α2
vi =

∏r
j=2

(
det(Pαj

)

(qi−αjzd)

)e

·vi, and the entries of Me
αr

. . . Me
α3

Me
α2

vi lie in F[X, z]. Consequently, for any ` ∈ [s],
we have that

• if (vi)` 6≡ 0, then the z-degree of the `th com-
ponent (Me

αr
. . .Me

α3
Me

α2
vi)` equals degz((vi)`)+∑r

j=2 e·degz(det(Pαj
))−∑r

j=2 e·degz(qi−αjz
d).

• if (vi)` ≡ 0, then (Me
αr

. . .Me
α3

Me
α2

vi)` ≡ 0.

Proof. The very first statement immediately follows
from Proposition 7. Let F` = (Me

αr
. . .Me

α3
Me

α2
vi)`.

It is clear that if (vi)` ≡ 0, then F` ≡ 0. Otherwise,
we get that

F` ·
r∏

j=2

(qi − αjz
d)e =

r∏

j=2

(det(Pαj )
e · (vi)`.

Think of these as polynomials in z, i.e. elements of
F[X][z]. Since

∏r
j=2(det(Pαj

)e and
∏r

j=2(qi − αjz
d)e

are both nonzero polynomials, we get that

degz(F`) + degz(
r∏

j=2

(qi − αjz
d)e) =

degz(
r∏

j=2

(det(Pαj
)e) + degz((vi)`).
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Hence

degz(F`) +
r∑

j=2

e · degz(qi − αzd) =

r∑

j=2

e · degz(det(Pαj )) + degz((vi)`).

¤

Now consider what happens when we apply
Me

αr
. . .Me

α3
Me

α2
to our chosen starting point u.

By linearity over G of Mα, we have that
Me

αr
. . .Me

α3
Me

α2
u =

∑
i∈[r] aiM

e
αr

. . . Me
α3

Me
α2

vi =
∑

i∈[r] ai

∏r
j=2

(
det(Pαj

)
qi − αjzd

)e

vi, where the last equa-

tion follows from Proposition 8. Let

g =
∑

i∈[r]

ai

r∏

j=2

(
det(Pαj

)
qi − αjzd

)e

vi (3)

By Proposition 8, for each i ∈ [r], the division in

η :=
∏r

j=2

(
det(Pαj

)
qi − αjzd

)e

vi is exact, i.e. η is a vec-

tor in F[X, z]s. Since every ai ∈ F[X, z], we have
that g ∈ F[X, z]s. Also, Lemma 12 established that

a1 6≡ 0. Let R = degz

(
a1

∏r
j=2

(
det(Pαj

)
q1 − αjzd

)e

v1

)
.

Recall that the coefficient of zd in q1 equals α1, and
that α1, α2, . . . , αr are distinct elements of F. There-
fore for j 6= 1, q1 − αjz

d still contains the unique
maximum z-degree monomial zd, i.e. zd appears in
q1−αjz

d with the nonzero coefficient α1−αj . Proposi-
tion 8 therefore gives us that R ≤ degz(a1)+degz(v1)+∑r

j=2 e·degz(det(Pαj
))−e(r−1)d. For i > 1, if ai 6≡ 0,

Let Ti = mindegz

(
ai

∏r
j=2

(
det(Pαj

)
qi − αjzd

)e

vi

)
. Note

that for qi − αjz
d, if j = i, we do not have the max-

imum degree monomial zd appearing. Proposition 8
therefore gives us that Ti ≥

∑r
j=2 e · degz(det(Pαj

))−∑r
j=2 e · degz(qi − αjz

d). Straightforward arithmetic
gives that Ti ≥

∑r
j=2 e ·degz(det(Pαj

))−e(r−1)d+e.

So for any e ≥ degz(a1) + degz(v1) + 1, we get
that R < Ti for every i ≥ 2 with ai 6≡ 0. Recall
that we observed before that degz(a1) + degz(v1) ≤
d3s5 + ds. We therefore take e = d3s5 + ds + 1,
and let κ =

∑r
j=2 e · degz(det(Pαj )) − e(r − 1)d +

e − 1. Note that degz(det(Pαj )) ≤ sd. Hence κ ≤
e(rds + 1) = O(rd4s6). We have shown that [g]≤zκ =

a1

∏r
j=2

(
det(Pαj )
q1 − αjzd

)e

v1.

5.5 Constructing the ABP for the
eigenvalue q1

Iterated matrix multiplication is coded easily with
ABPs, which yields the following lemma:

Lemma 14. The vector g = Me
αr

. . . Me
α3

Me
α2

u can be
computed by a generalized multi-output ABP of size
O(r2d3s6+γ1 + r5+γ2ds).

Proof. Starting with the generalized multi-output
ABP computing u given by Lemma 13 of size
O(s1+γ1 + r5+γ2ds), we add stages to compute the
required consecutive multiplication by matrices of the
form Mα, for α ∈ F. Each such matrix multiplication
can be achieved by adding O(rs1+γ1) nodes to the
ABP. Namely, Mα = Adj(Pα)Q = Adj(P − αzdQ)Q.
Since Q is a projection, i.e. Mα consists of r columns
selected from Adj(P − αzdQ). If we would allow ar-
bitrary polynomials on the wires of ABPs, this means
that multiplication by Mα can be realized by one layer
that is a bipartite graph with s input nodes and s out-
put nodes with at most rs many edges that are labeled
by entries of Adj(P − αzdQ). Within the generalized
ABP model we can achieve the same, by expanding
each such edge into a subprogram computing the ap-
propriate entry of Adj(P − αzdQ). By Theorem 3,
each entry of Adj(P − αzdQ) can be computed by a
generalized ABP of size O(sγ1). This gives a overall
bound of O(rs1+γ1) many added nodes to multiply by
Mα.

We therefore get that the final ABP for g has size
O(er·rs1+γ1+s1+γ1+r5+γ2ds). This gives the required
bound stated in the lemma, since e = d3s5 + ds + 1
and r < s. ¤

Using Lemma 4, we get:

Corollary 2. [g]≤zκ can be computed by a generalized
multi-output ABP of size O(r3d7s12+γ1 + r6+γ2d5s7).

Let ṽ1 = [g]≤zκ. We know that ṽ1 ∈ F[X, z], since
g ∈ F[X, z]. We apply M0 one more time to ob-
tain the eigenvector corresponding to v1. We have

that M0ṽ1 =
(

det(P )
q1

)
ṽ1. We know that M0ṽ1 ∈

F[X, z], since M0 only contains polynomial entries
and ṽ1 ∈ F[X, z]. Hence, if ` is such that (v1)` is
a nonzero component (which must exist), we get that
(ṽ1)` · det(P )

(M0ṽ1)`
= q1.
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The enumerator (ṽ1)` · det(P ) is computed by se-
ries composition of a generalized ABP computing
det(P ) with a single output generalized ABP com-
puting (ṽ1)`, which is obtained via Corollary 2. The
size can be bounded by O(r3d7s12+γ1 + r6+γ2d5s7).
The denominator is obtained by adding one more
stage to the ABP from Corollary 2 in order to com-
pute multiplication by M0. The size of the result-
ing single output generalized ABP can be bounded by
O(r3d7s12+γ1 + r6+γ2d5s7). Finally, we apply Lemma
2 to perform the exact division. Hence q1 can be com-
puted by a generalized ABP of size O((r3d7s12+γ1 +
r6+γ2d5s7)γ3). The ABP for p1 is obtained by setting
z = 1 in this ABP. This completes the proof of Main
Lemma 8. ¤

We can now prove Theorem 1. First we convert the
ABP for f to standard form using Lemma 6. This
blows up the size to O(r2s). Next we apply Lemma 8.
The composition of these two operations yields that
for the function β(r, d, s) from Lemma 5 we can write
β(r, d, s) = O((r3d7(r2s)12+γ1 + r6+γ2d5(r2s)7)γ3),
where γ1, γ2 and γ3 are the absolute constants intro-
duced in Section 2. To be concrete, we get from this
that β(r, d, s) = O(r396d84s180). Hence by Lemma
5, every pi can be computed by an ABP of size
β(r, d, (rs)γ3) = O(r2556d84s2160). ¤

6 Roots of arithmetic circuits and
Newton’s method

For f(y) ∈ R[y] with f(p) = 0 for p ∈ R, recall the

update rule for Newton’s method yk+1 = yk− f(yk)
f ′(yk)

,

where f ′ is the derivative of f . For arithmetic circuits
we have the following analogue, where we compute
successively better approximations p≤k, p≤k+1, . . . to
a root p ∈ F[X] of f ∈ F[X, y].

Lemma 15. Let f ∈ F[X, y] and let f ′(x, y) :=
∂f

∂y
.

Let p ∈ F[X] be a root of f for y, and assume that
ξ0 := f ′(0, p(0)) 6= 0. Then ∀k ≥ 1 it holds that

p≤k+1 = p≤k − 1
ξ0
· f(x, p≤k)=k+1.

Proof. Let r = degy(f) and write f =
∑r

i=0 Ci(x)yi.

So f ′(x, y) =
∂f

∂y
=

r∑

i=1

iCi(x)yi−1.

The following computation is modulo the ideal Ik+2

generated by xk+2
1 , xk+2

2 , . . . , xk+2
n , i.e. we identify any

polynomials g and h if [g]≤k+1 = [h]≤k+1.

0 ≡ f(x, p)
≡ f(x, p≤k + p=k+1)

≡
r∑

i=0

Ci(x) (p≤k + p=k+1)
i

≡ C0(x) +
r∑

i=1

Ci(x)
(
(p≤k)i + i · (p≤k)i−1 · p=k+1

)

≡
r∑

i=0

Ci(x)(p≤k)i +

p=k+1 ·
r∑

i=1

i · Ci(x)(p≤k)i−1

≡ f(x, p≤k) + p=k+1 · f ′(x, p≤k)
≡ f(x, p≤k) + p=k+1 · f ′(x, p≤k)=0.

Note that f ′(x, p≤k)=0 = f ′(0, p≤k(0)) = f ′(0, p(0)) =
ξ0. We get that without going modulo Ik+2, the follow-
ing equation is satisfied: 0 = f(x, p≤k)=k+1 + p=k+1 ·
ξ0. This implies the statement of the lemma. ¤

6.1 Proof of Theorem 2

Let f ′(x, y) := ∂f
∂y . In case f ′(0, p(0)) 6= 0, we

can construct an arithmetic circuit for p by repeat-
edly applying Lemma 15. We compute the compo-
nents of p separately, starting with p0 and p1, which
we can easily compute within size O(s). To compute
p=k+1, provided we have p0, p1, . . . , p=k computed at
gates somewhere already, we use a copy of a circuit
Φ that computes the homogeneous components of f
up to degree k + 1 ≤ deg(p). This is a circuit for
which, similar to the proof of Lemma 3, each node is
split into k + 1 nodes computing homogeneous com-
ponents. Let v0, v1, . . . , vk+1 be the gates in Φ corre-
sponding to the output gate of the original circuit,
i.e. f0, f1, . . . , f=k+1 are computed at these gates.
We can bound the size of Φ by O(M(k + 1)s), pro-
vided we use a gadget of size M(k +1) that computes
the coefficient map of polynomial multiplication, in
order to deal with multiplication. Note that having
p0, p1, . . . , pk computed separately at gates is exactly
the right format for feeding p≤k into Φ for the vari-
able y. A straightforward structural induction proves
that after rewiring, for every 0 ≤ i ≤ k + 1, the gate
vi computes f(x, p≤k)i. Lemma 15 tells us that af-
ter rescaling the output of the gate vk+1 by a fac-
tor −1/ξ0, we have obtained p=k+1. We repeat the
previously described construction for k up to degree
deg(p). This way, we obtain a circuit for p of size
O(M(deg(p)) · deg(p) · s).
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If f ′(0, p(0)) = 0, then we can reduce to the above
case as follows. Write f =

∑r
i=0 Ci(x)yi with Cr(x) 6≡

0. Let f i(x, y) = ∂if
∂iy . Then fr(x, y) = r! · Cr(x).

Since the characteristic of F is zero, r! 6= 0, so
fr(x, p) 6≡ 0. We have in this case that f0(x, p) ≡ 0.
Let i be the smallest integer for which f i(x, p) 6≡ 0.
Then 0 < i ≤ r, and f i−1(x, p(x)) ≡ 0. Due to Lemma
1, f = (y − p)mh, for some polynomial h not divsible
by y− p. By repeatedly computing partial derivatives
one easily observes that the number i equals the mul-
tiplicity m of the root p in f .

We have that there exists x0 ∈ F such that
f i(x0, p(x0)) 6= 0. Let g(x, y) = f i−1(x + x0, y), and
let q = p(x + x0). By Theorem 4, one gets that g is
computable by a circuit of size O(M(m)s). Let g′ =
∂g
∂y . Then g′(x, y) = f i(x + x0, y). The polynomial
g is not identically zero, and g(x, q(x)) = f i−1(x +
x0, p(x + x0)) ≡ 0, and furthermore g′(0, q(0)) =
f i(x0, p(x0)) 6= 0.

Now one proceeds as in the first case, to get a circuit
for q of size O(M(m)M(deg(p))·deg(p)·s), from which
one obtains a circuit for p of size O(M(m)M(deg(p)) ·
deg(p) · s). ¤

Corollary 3. The class is closed under taking roots.
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