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Abstract: We consider the problem of maximizing revenue in prior-free auctions for general single parameter
settings. The setting is modeled by an arbitrary downward-closed set system, which captures many special
cases such as single item, digital goods and single-minded combinatorial auctions. We relax the truthfulness
requirement by the solution concept of Nash equilibria. Implementation by Nash equilibria is a natural and
relevant framework in many applications of computer science, where auctions are run repeatedly and bidders
can observe others’ strategies, but the auctioneer needs to design a mechanism in advance and cannot use any
information on the bidders’ private valuations.
We introduce a worst-case revenue benchmark which generalizes the second price of single item auction and the
F2 benchmark, introduced by Goldberg et al., for digital goods. We design a mechanism whose Nash equilibria
obtains at least a constant factor of this benchmark and prove that no truthful mechanisms can achieve a
constant approximation.
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1 Introduction

Revenue maximization in mechanism design has an
extensive history, which primarily begins with with
the seminal papers of Myerson [13] and of Riley and
Samuelson [17]. These papers study optimal auctions
in Bayesian settings, where bidders’ valuations are
drawn from commonly known distributions and the
mechanism designer relies on these distributions. In
recent years, a different approach, known as prior-free
mechanism design, has gained much attention from
researchers in theoretical computer science. Prior-free
mechanism design aims to overcome the problem that
Bayesian auctions highly depend on the distributions
of bidders’ valuation, which are hard or impossible to
obtain in many scenarios. The main challenge in prior-
free mechanism design is that there are no characteri-
zations for the optimal auction as in the Bayesian set-
tings. Research in this direction has been taking the
revenue benchmark approach, which has been applied
successfully in several settings (see the survey [5]).
The idea is to define a function on the valuation vec-
tor, called benchmark, that presents an upper bound
on the revenue of “reasonable” mechanisms. And the
goal is to design a mechanism, which achieves a con-
stant fraction of the benchmark. Such mechanism is
called a competitive mechanism.

∗The work was done when the author was a Ph.D student at

Cornell University.

The current works in this direction mainly focus
on designing competitive truthful auctions. Thus far,
however, competitive truthful auctions are mostly
known for simple auction settings, where the goods
are in unlimited supply and/or the bidders are sym-
metric. This is in part because of the strong condition
on truthful auctions, which requires that, it is best
for bidders to report their true valuation regardless
of what other bidders do. This concern is also ex-
pressed in [5]: “ Truthfulness may needlessly limit our
ability to achieve our goals [maximizing revenue]. . . .
Thus, one of the most important research directions
for future research is to consider alternative solution
concepts”.

Motivated by this line of research, in this paper,
we consider the problem of designing competitive auc-
tions with the solution concept of Nash equilibria in
full information settings. In contrast with truthful
auctions, Nash equilibria only require that no bidder
would change his bid if others keep their strategies.
In this setting, bidders observe each other’s bids and
adjust their bids accordingly, but an important con-
straint is that auctioneers need to design a mechanism
with no information on bidders’ private valuations.

The setting, usually called Nash Implementation,
is a natural and relevant framework in many applica-
tions, where auctions are run repeatedly and bidders
can observe and adapt to others’ bids to optimize their
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payoff. The auctioneer, on the other hand, needs to
design a mechanism in advance and has to commit to
this mechanism in the future. Therefore, he/she does
not have any information on the valuation of bidders
to design the mechanism.

In the literature of Nash implementation, most
mechanisms require bidders to submit others’ private
information; if any two bidders report different infor-
mation, they will get a large penalties. This type of
mechanisms is unnatural and impractical.

In this paper, we are interested in a more natural
class of mechanisms, where the outcome depends con-
tinuously on the bid vector, further more, bidders can
only learn and adapt based on others’ bids, not on
their private valuations. The main question we ask
is: With this natural type of mechanisms, and using
Nash equilibria as the solution concept, can we over-
come the drawbacks of truthful mechanisms? Namely,
can we define a natural revenue benchmark and de-
sign a competitive mechanism for general auction set-
tings, where competitive truthful mechanisms are not
known? Can we obtain more revenue in this frame-
work than in truthful auctions?

Our results. We consider a general single parameter
auction setting, which is also studied in [6]. Here,
each bidder has a private valuation for receiving a
service and there is a set system representing feasi-
ble sets. A feasible set is a set of bidders that can
be served simultaneously. For example, in single item
auctions the feasible set system contains only single-
tons; in digital good auctions, the set system contains
all subsets of the bidders. We focus on the general case
of downward-closed environment where every subset
of a feasible set is again feasible. An important ex-
ample of this environment is a combinatorial auction
with single-minded bidders, where feasible sets corre-
spond to subsets of bidders seeking disjoint bundles of
goods.

We define a natural benchmark and design a mech-
anism that generates at least 1/14 fraction of this
benchmark. We prove that no truthful mechanisms
can be competitive against our benchmark.

Our mechanism combines two natural classes of
mechanisms: a truthful and the proportional shar-
ing mechanisms. Our mechanism might have multiple
equilibria. Therefore, one potential criticism is that
among many equilibria, there might be one that gives
low revenue. However, this is also an issue for weakly

dominant strategy truthful mechanisms1. A part of
our mechanism uses a truthful mechanism and inter-
estingly, this is the only part that causes the existence
of an equilibrium with low revenue. More precisely, if
we assume that in weakly dominant strategy truthful
mechanisms bidders bid truthfully, or in other words,
if bidders do not play dominated strategies, then ev-
ery Nash equilibrium of our mechanism generates at
least a constant fraction of the benchmark.

The main idea. The two special cases of our setting
are the single item auction, which has a full compe-
tition among bidders, and the digital goods auction
with no competition among bidders. Our benchmark
and mechanism can be seen as a combination of these
two extreme cases. The benchmark is the general-
ization of the second price in single item and the F2

benchmark, proposed in [4], for digital good. Consider
the case where we can partition the set of bidders into
two sets N1 and N2, N2 being a set of bidders that
can be served simultaneously. From N1 we can get
at most the maximum social welfare of this group of
bidders, denoted by SocialOpt(N1), for N2, because
of the lack of competition, we will use the benchmark
F2(N2). Taking the minimum over all partitions, we
can define the following benchmark, which gives a gen-
eralization of the two special cases.

R = min
N1,N2

SocialOpt(N1) + F2(N2),

where N1, N2 is a partition of the bidders and N2 can
be served simultaneously.

To design a competitive mechanism against R, we
first observe that the randomized outcomes of our set-
ting can be captured by a polyhedron, for which the
proportional sharing mechanism is well understood [8,
14]. Proportional sharing for a single constraint, for
example

∑
i xi ≤ 1 is a mechanism, such that if bid-

der i bids bi, then his allocation xi is biP
k bk

and his
payment is bi. For a general polyhedral setting, each
bidder needs to bid on all the constraints of the poly-
hedron. This is a mechanism that can create compe-
tition among bidders. An intuitive way to understand
proportional sharing is by a similar game, where we
assume that bidders are “price taking” [9]. In this
game, there are a set of unit prices on the constraints
of the polyhedron, and bidders try to optimize their
payoff according to these prices. The prices can be
seen as a dual vector of an optimization program. If

1A simple example is the case of second price auction for a
single item. It is a Nash equilibrium if, except for the highest
bidder who bids truthfully, all other bidders bid 0. The revenue
is 0 in this case
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we know the valuations of the bidders, we can find the
prices to get a revenue as high as the optimal social
welfare. However, when the prices are the functions of
the bid vector, there is a “price shading” effect. Bid-
ders would not increase their bids to match the prices
resulted in the price taking game. This problem is
more serious with bidders of high valuations and bid-
ders with little competition. We are not able to get
high revenue from them.

The idea is that, after the proportional sharing
mechanism is run, we can observe the set of bidders
who get a large share of resources, which we call big
bidders. Note that this set of bidders depend on the
outcome of the proportional sharing mechanism. If
the resource that these bidders get is large enough,
we know that they need to belong to a feasible set.
One can say that there is a lack of competition among
them. We will give additional resources to these bid-
ders for extra money by using the mechanism designed
for digital goods.

This natural idea of attaching a truthful mechanism
after a proportional sharing mechanism, however, has
several issues. Because the second mechanism is run
on the outcome of the first mechanism, bidders might
behave differently from the case where the two mech-
anism are run separately. There are two main issues.
First, the second phase of the mechanism is run only
for the set of big bidders who get large share of the
resource in the first round, therefore, it might be the
case that the small bidders will overbid in the first
round to get to the second one. Thus, the property
of a Nash equilibrium in proportional sharing might
be not valid. Second, it is also possible that the large
bidders will change the equilibrium bid of the game
in the first round to change the set of bidders that
survive to the second round, and thus the price of the
second mechanism might be better for them.

To overcome these difficulties, we need to mod-
ify both mechanisms. For the proportional sharing,
in particular, we introduce a “truncated proportional
sharing” mechanism, which sets an upper bound on
allocations of bidders in the first round to guarantee
that big bidders cannot benefit from over bidding to
change the set of bidders that survive to the second
round.

Related work. Profit maximization in mechanism
design was first studied in the seminal papers of My-
erson [13] and of Riley and Samuelson [17]. These
papers characterize optimal auctions in Bayesian set-
tings, which is by now standard and can be found

in basic texts on auction theory. Design of prior-free
mechanisms is an important topic of computer sci-
ence literature. The approach was first considered by
[4] and has a large literature, see, for example, the
survey [5] and the citations therein.

The main distinction in our approach is to use Nash
equilibria in full information setting as the solution
concept. This approach belongs to the theory of Nash
implementation in economics literature. In this frame-
work it is assumed that agents (bidders in our case)
have full information about each other’s preferences,
but the planner (auctioneer) only knows the set of
outcomes and does not have any information on the
private types of agents. The literature was initiated
with the seminal work Maskin [10], where a character-
ization of the set of implementable outcomes is given.
There is a large literature on this topic see the surveys
[10, 11, 16].

The type of mechanisms used in Nash implementa-
tion is, however, not natural. It is usually required
that bidders need to report others’ preferences (pri-
vate valuations), and they will get some large penalties
if any two bidders do not report the same information.
The mechanism we use in this paper is the combina-
tion of two natural, well known classes of mechanisms:
proportional sharing and a weakly dominant strategy
truthful mechanism.

Our paper is not the first attempt in algorithmic
mechanism design literature to relax the dominant
strategy solution concept. Babaioff, Lavi and Pavlov
[2] consider the concept of implementation in undomi-
nated strategies. The focus of their work is the compu-
tational issues and social welfare of single value com-
binatorial auctions. Our setting and mechanism can
be seen in this framework. However, we focus on the
revenue of the mechanism. Chen, Hassidim and Mi-
cali [3] consider the problem of maximizing revenue
in multi-stage subgame perfect Nash implementation.
Their goal is to design a robust mechanism that ex-
tracts a revenue of maximum social welfare. However,
their mechanism is fairly complex, consisting of n + 1
rounds, where n is the number of bidders.

The main ingredient we use to design our mech-
anism is the proportional sharing mechanism, which
was introduced and studied by Kelly [9]. Most of the
works in this line is about the social welfare of the
systems (see the survey [7]). The revenue of propor-
tional sharing mechanism is first considered in [14]
and the revenue of a more general class mechanism
called quasi proportional sharing is studied recently
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in [12, 15].

Structure of the paper. In Section 2 we give no-
tations and some preliminary results. In Section 3
we prove a revenue upper bound for truthful mecha-
nisms. Section 4 introduces our revenue benchmark
and a competitive mechanism. Some proofs are given
in the Appendix.

2 Notations and preliminaries

2.1 Notations

In this paper we consider auctions for n bidders in
single parameter environments, i.e. bidder i’s valu-
ation for receiving service is vi, and the valuation
for not receiving service is normalized to be 0. Let
0 ≤ xi ≤ 1 represent the probability that the service
is allocated to bidder i, and let pi be his payment.
We assume that bidders have quasi-linear utilities ex-
pressed vixi − pi.

We consider a setting called general single param-
eter auction [6], where the constraints of the service
that can be allocated to bidders is represented by a
set system representing feasible sets. A feasible set
is a set of bidders that can be served simultaneously.
We focus on the typical case of downward-closed envi-
ronment where every subset of a feasible set is again
feasible. For example, in single item auction the fea-
sible set system contains singletons. Another exam-
ple of such an environment is a combinatorial auction
with single-minded bidders, where feasible sets corre-
spond to subsets of bidders seeking disjoint bundles of
goods.

If we consider randomized outcomes in this setting,
then the feasible allocation vectors ~x = (x1, ..xn) form
a polyhedron. We give the formal statement in the
following theorem, whose proof can be found in Ap-
pendix A.1.

Theorem 2.1 The set of randomized allocation vec-
tors of the general single parameter auction is the
set of non negative vectors ~x = (x1, .., xn) satisfying
A~x ≤ ~1, ~x ≥ ~0, where A is a non negative matrix.

In the rest of the paper, we will use αe
i as the entries

of the matrix A, where e ∈ E is a row of the matrix.
The polyhedral environment can be written as

∑

i

αe
i xi ≤ 1 for all e ∈ E, and xi ≥ 0.

2.2 Truthful mechanisms in single
parameter settings

The following result is the basic result in mechanism
design.

Theorem 2.2 ([1, 13]) A mechanism is truthful in
expectation if and only if, for any bidder i and any
fixed choice of bids by the other bidders b−i,

(i) xi(bi) is monotone non-decreasing.

(ii) pi(bi) = bixi(bi)−
∫ bi

0
xi(z)dz.

Given this theorem, the payment can be derived from
the allocation rule. It is useful to specialize the theo-
rem above to the case where the mechanism is deter-
ministic, that is xi ∈ {0, 1}. It is straightforward to
see that deterministic truthful mechanisms are of the
following types.

Corollary 2.1 Any deterministic truthful auction is
specified by a set of functions ti(bi) which determine,
for each bidder i and each set of bids bi, an offer price
to bidder i such that bidder i wins and pays price ti if
bi > ti, or loses and pays nothing if bi < ti. (Ties can
be broken arbitrarily.)

2.3 Digital good auctions

For digital goods auctions, the goods are in unlim-
ited supply. The setting can be described as 0 ≤ xi ≤
1 for all i. The following profit benchmark, call F2 is
introduced in [4].

Definition 2.1 The optimal single priced profit with
at least two winners is

F2(v) = maxi≥2iv(i),

where v(i) is the ith largest valuation.

In the following we also use the notation F(v) de-
fined as F(v) = maxiiv(i).

Also in [4], Goldberg et al. designed the following
mechanism and show that the revenue of this mecha-
nism is at least 1/4 of F2.

Definition 2.2 (RSPE) The Random Sampling
Profit Extraction auction (RSPE) works as follows:

(i) Randomly partition the bids b into two by flipping
a fair coin for each bidder and assigning her to b′

or b′′. Compute R′ = F(b′) and R′′ = F(b′′), the
optimal profits for each part.
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(ii) Find the largest group of bidders in b′′ that can
share R′ equally. Charge each bidder R′/k”,
where k” is the number of winning bidders.

Find the largest group of bidders in b′ that can
share R′′ equally. Charge each bidder R′′/k′,
where k′ is the number of winning bidders.

Theorem 2.3 ([4]) The RSPE generates a revenue
at least 1/4 of F2.

For completeness a proof of this theorem is given in
the Appendix A.2.

2.4 Proportional sharing mechanism
for polyhedral environments

Proportional sharing [9] is a natural mechanism,
that can be generalized to polyhedral environments [8,
14]. When sharing a single resource with constraint∑

i αixi ≤ 1 the fair sharing mechanism requires that
each bidder j submits a bid bj , the amount of money
she wants to pay, and the resource is allocated pro-
portional to the bids, as xj = bj/(αj

∑
i bi).

For environments with more constraints
∑

i αe
i xi ≤

1 for all e ∈ E, the mechanism requires that bidders
submit bids be

j separately on each constraint e. We
denote the sum of the bid

∑
i be

i by pe. The alloca-
tion rule limits the value xj for bidder j to at most
xe

j = be
j/(αe

jp
e). The idea is to ask bidders to submit

bids be
j for each constraint e, allocate the resources

separately, make bidder j pay wj =
∑

e be
j , and then

set xj = min{e:αe
j 6=0} xe

j . The mechanism also needs
to deal with constraints that are under-utilized by al-
lowing each bidder to request an amount re

j without
any monetary bid.

The mechanism can be described formally as fol-
lows:

Definition 2.3 (General Proportional Sharing
[8, 14]) Each bidder j submit a bid be

j and a request
re
j for each constraint e. For constraint e we use the

following allocation:

• If
∑

i be
i > 0 then xe

j = be
j

αe
j (
P

i be
i ) for ∀j.

• If
∑

i be
i = 0 and

∑
i αe

i r
e
i ≤ 1 then xe

j = re
j for

∀j, else, set xe
j = 0 for ∀j.

For each bidder j, the amount of money that she needs
to pay is wj =

∑
e be

j and the final allocated xj =
min{e:αe

j 6=0} xe
j .

It can be proved that a Nash equilibrium exists and
give the following conditions. For completeness we
provide a proof in Appendix A.3.

Theorem 2.4 ([8]) There always exists a Nash equi-
librium in the game defined by the General Propor-
tional Sharing. Let ai = max{xi|Ax ≤ 1;x ≥ 0},
pe =

∑
i be

i . An allocation ~x a bid and a request vec-
tor ~b, ~r is a Nash solution if and only if:

vj =
∑

e

peαe
j

(1− αe
jxj)

for 0 < xj < aj ;

vj ≥
∑

e

peαe
j

(1− αe
jxj)

for xj = aj and

vj ≤
∑

e

peαe
j for xj = 0.

In the formula above we do not consider the constraint
e that has only one positive coefficient αe

i .

There is an intuitive way to understand the com-
plex formula above by a “price taking” game, where
{pe =

∑
i be

i , e ∈ E} are seen as unit prices and bid-
ders optimize their payoff assuming that these prices
are fixed. The condition above, however takes into
account that pe depends on the bid vector. For more
detail, see the Appendix A.3.

3 Revenue upper bound of truthful
mechanisms

In this section we describe an auction setting and
prove an upper bound for the revenue of any truthful
mechanism. The auction setting is the following ex-
ample. The service provider can either provide service
to a single bidder (numbered 0) or any subset of other
bidders (numbered from 1 to n). This setting can be
captured by the following inequality system

x0 + xi ≤ 1 ∀ i ∈ [1, .., n].

This inequality system captures exactly the following
network bandwidth sharing game. Bidder 0 is inter-
ested in a path of bandwidth x0 containing n differ-
ent edges e1, .., en, each with capacity of 1. Bidder
i, 1 ≤ i ≤ n, is only interested in a path containing
single edge ei. See Figure 1.

Theorem 3.1 In the auction setting described in Fig-
ure 1, for every truthful mechanism in expectation and
any constant c, there exists a valuation vector ~v such
that,

∑n
i=1 vi ≥ log n − 2 and log log n ≤ v0 ≤ log n,
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and the revenue obtained by the mechanism is at most
c( v0

log v0
) + 2.

Figure 1: An example of general single parameter auction

and bandwidth sharing game.

Proof. We first show that for every truthful mecha-
nism, there exists a valuation log log n ≤ v0 ≤ log n
such that the revenue obtained from bidder 0 is at
most c( v0

log v0
). Assume the contrary, p0(b) ≥ c b

log b for
all log log n ≤ b ≤ log n, we have

p0(b) = b · x0(b)−
∫ b

0

x0(t) dt.

Assume that x0 is differentiable. Note that we can
approximate the monotone function x0(b) by a differ-
entiable function without essential change in the anal-
ysis of this proof. Taking the derivative of the formula
above, we have

p′0(b) = b · x′0(b) + x0(b)− x0(b) = b · x′0(b),

which means

x′0(b) =
p′0(b)

b
.

Now,

x0(v) =
∫ v

0

x′0(b) db =
∫ v

0

p′0(b)
b

db

=
p0(v)

v
+

∫ v

0

p0(b)
b2

db.

Thus,

x0(v) ≥
∫ v

0

p0(b)
b2

.

If p0(b) ≥ c · b
log b for log log n ≤ b ≤ log n,

then x0(log n) ≥ c

∫ log n

log log n

1
b log b

db =

= c(log log log n− log log log log n).

This show that for every c, we can choose n large
enough such that x0(log n) > 1, which is a contradic-
tion.

We next show that there exists a valuation vector
such that

∑n
i=1 vi ≥ log n − 2, but the revenue ob-

tained from these bidders is at most 2. If we know
this, the theorem is proved. To show this we will
use Yao’s minimax principle [19]. This is a standard
tool to reduce the analysis of randomized algorithms/
mechanisms to the analysis of deterministic ones on a
distribution of input. We need to find a distribution
on vi, such that

∑
i vi ≥ log n − 2 and the expected

revenue of any deterministic truthful mechanism is at
most 2.

Consider the random valuation vi = 1
k with prob-

ability 1
n for k = 1, .., n. It is straightforward to see

that any deterministic auction gains at most a rev-
enue of 1

n revenue in expectation from a single bidder.
Thus from n bidders, with independent valuations
from this distribution, the expected revenue E(R) is at
most 1.

However, we need to show the revenue bound for
a ~v such that

∑n
i=1 vi ≥ log n − 2. One can use the

Chebyshev’s inequality for this purpose. We have

E(vi) =
1
n

∑

k

1
k

=
Hn

n

and
σ2(vi) =

1
n

∑

k

(
1
k
− Hn

n
)2 =

=
1
n

∑

k

1
k2
− (

Hn

n
)2 ≤ 2

n
.

We have

Pr(
n∑

i=1

vi < log n− t) < Pr(
n∑

i=1

vi < Hn − t) ≤

≤ nσ2

t2
≤ 2

t2
.

Thus we obtain

Pr(
n∑

i=1

vi ≥ log n− 2) ≥ 1
2
.

Now, we have

E(R) =

E(R|
∑

vi < log n− 2) · Pr(
∑

vi < log n− 2)

+E(R|
∑

vi ≥ log n− 2) · Pr(
∑

vi ≥ log n− 2).

117



T. NGUYEN

Which implies

E(R|
∑

vi ≥ log n− 2) ≤

≤ E(R)
Pr(

∑
vi ≥ log n− 2)

≤ 1
1/2

= 2.

By this we conclude the proof. ¤

Remark We will see in the next section that when the
valuations vi satisfy the condition in Theorem 3.1, the
proportional sharing obtains at least O(v0) revenue. It
is worth to describe this mechanism in this particular
example. Consider the network bandwidth sharing
interpretation of our example in Figure 1, bidder 0
bids a non negative vector: a number bi

0 on each edge
of the graph and bidder i, 1 ≤ i ≤ n, only bids bi on
the edge ei. The mechanism will use the fair sharing
on each link. Bidder i, 1 ≤ i ≤ n pays bi and gets xi =

bi

bi+bi
0
. Bidder 0 pays

∑
i bi

0 and gets x0 = mini
bi
0

bi+bi
0
.

4 Our mechanism

In this section we will introduce our revenue bench-
mark and give a competitive mechanism As discussed
in the introduction, we observe that the general sin-
gle parameter auction setting generalizes the cases of
auctions for singe item and digital goods. Our mech-
anism can be thought of as the combination of the
two special cases above. We first define the revenue
benchmark. See Figure 2 for an illustration.

Figure 2: A revenue benchmark for downward closed set

systems.

Definition 4.1 (Benchmark R) R = minN1,N2

SocialOpt(N1) + F2(N2), where N = N1 ] N2 is a
partition the bidders, such that all bidders in N2 can
be serviced simultaneously.

Remark This benchmark gives exactly the second

valuation in the single item auction and the F2

benchmark in the digital good auction. In the
setting of Theorem 3.1, one can show that R ≥
min{v0,

∑n
i=1 vi} ≥ v0 − 2. Note that the revenue

that we would like to obtain from N2 is the maximal
social welfare, therefore, in order to design a mecha-
nism obtaining a constant factor of R, we cannot fix
the partition before running the mechanism. We will
see later that the partition is part of the outcome of
the mechanism.

In the rest of the paper, we give a mechanism
whose revenue at Nash equilibrium is at least a con-
stant factor of the Benchmark R. This result com-
bined with the revenue upper bound on truthful mech-
anisms shows that for the goal of maximizing rev-
enue, Nash implementation can asymptotically gen-
erate more revenue than truthful mechanisms.

The ideas. The basic idea is to use the propor-
tional sharing mechanism for general polyhedral envi-
ronments as a version of creating competition among
bidders, and then we give additional resources to bid-
ders for extra money. More precisely, after the pro-
portional sharing mechanism, we consider the bidders
who get a large share of resources, which we call big
bidders. Note that the set of big bidders depends on
the proportional mechanism. The intuition is that
there is a lack of competition among these bidders, and
therefore, we can use the mechanism designed for the
benchmark F2 for the big bidders. However, there are
some issues with this approach. Because the second
mechanism is run on the outcome of the first mecha-
nism, bidders might behave differently from the case
where the two mechanism are run separately.

The first problem is that, because the second phase
of the mechanism is run only for the set of big bid-
ders, therefore, the small bidders might overbid in
the first round to get to the second one. To overcome
this difficulty, we modify the paying scheme in the sec-
ond round of the mechanism. The price that a bidder
needs to pay is the maximum of the two values: the
price obtained in the second round and a price related
to the price that the bidder pays in the first round.
By doing this we make sure that if the small bidders
overbid in the first round, they still need to pay a large
money in the second round, and their payoff will be
negative if he does so. We define formally the modified
version of RSPE (Definition 2.2) as follow.

Definition 4.2 (RSPE*(~p)) Given a price pi for
each bidder i. Let bi be the bid from bidder i.
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(i) Randomly partition the bids b into two by flipping
a fair coin for each bidder and assigning her to b′

or b′′. Compute R′ = F(b′) and R′′ = F(b′′), the
optimal profits for each part.

(ii) Find the largest group of bidders among b′ that
can equally share the profit (R′′), the number of
these bidders is k′. Charge bidder i max{R′′

k′ , pi}.
Find the largest group of bidders among b′′ that
can equally share the profit (R′), the number of
these bidders is k′′. Charge bidder i max{R′

k′′ , pi}.

The second problem is that in the first round the
large bidders might also bid differently from the equi-
librium of proportional sharing to change the set of
bidders that survive to the second round, and thus
the price of the second mechanism might be different
and better for them. For this problem, we will modify
the proportional sharing such that at an equilibrium,
if a bidder gets a large share of the resource, then
by bidding differently from the equilibrium, he cannot
benefit in the second round of the mechanism.

To make it more precise, consider the simple case
of sharing an unit of a single resource. We would like
to modify the proportional sharing such that the fol-
lowing is true. Consider the set of bidders who get at
least c fraction of the resource at a Nash equilibrium,
if any of these bidders lowers his bid, he will get less
than c, furthermore, he cannot change the set of the
big bidders by over bidding. Note that this condition
does not hold in traditional proportional sharing be-
cause by overbidding a bidder can change the price of
the resource and other bidders will get less resource.
To this end, we introduce the following mechanism
called Truncated Proportional Sharing (TPS).

Definition 4.3 (TPS(c)) The Truncated Propor-
tional Sharing mechanism for the resource constraint∑

i αixi ≤ 1, and an upper limit c is the following.

Each bidder i bids bi. Let

b∗i =

{
bi if bi

αi·
P

j bj
≤ c,

b s.t b
αi·(b+

P
j 6=i bj)

= c if bi

αi·
P

j bj
> c.

The payment for bidder i is bi, and the allocation for
bidder i is xi = min

{
c,

b∗i
αi·
P

j b∗j

}
.

As the name of the mechanism suggests, the Trun-
cated Proportional Sharing mechanism above is a
modified version of traditional proportional sharing,
where the resource is truncated by c, and the bid bi

is also truncated by a value at which bidder i gets c

fraction of the resource. Thus, we can see that at a
Nash equilibrium, no bidder i bids more than b∗i , fur-
thermore, if he bids less than b∗i , then xi < c and he
cannot change the set of big bidders by bidding more
than b∗i .

Now because at a Nash equilibrium, bi = b∗i , to
analyze the Nash equilibria, we can see this game as
a proportional sharing game discussed in Section 2.
Observe that the resource that each bidder i can get
is min

{
c, bi

αi·
P

j bj

}
. This is exactly description of the

game where each bidder has two constraints xi ≤ c
and

∑
i αixi ≤ 1. Thus with the argument above and

applying the basic result of Theorem 2.4, we obtain
the following.

Lemma 4.1 Assuming the valuation of bidder i is vi,
there is an unique Nash equilibrium of the mechanism
TPS and the condition for the equilibria is bi = b∗i for
all i, furthermore, let p =

∑
i bi, then the following is

true.
vi =

pαi

(1− αixi)
for 0 < xi < c ;

vi ≤ pαi

(1− αixi)
for xi = 0 ;

vi ≥ pαi

(1− αixi)
for xi = c .

Moreover, if bidder i gets c fraction of the resource,
then by increasing his bid, he does not influence other
bidders’ strategies and by lowering his bid, he gets less
than c fraction of the resource. ¤

Remark The uniqueness of Nash equilibrium in the
Lemma above can be seen directly from the condition
of the equilibrium. The ~x satisfying this condition is
the optimal point of the convex optimization program
max

∑
i(vixi − 1

2αivix
2
i ) subject to

∑
i αixi ≤ 1 and

0 ≤ xi ≤ c. This mechanism for a single constraint
and this lemma is the building block of the mechanism
for a more complex polyhedron.

We are now ready to define our main mechanism,
called Two-Phase Mechanism.

Definition 4.4 (TPM(c1, c2)) The Two-Phase
Mechanism is for a general downward closed set sys-
tem, which is captured by the polyhedral A~x ≤ ~1, each
constraint (row) e of A is

∑
αe

i xi ≤ 1. The mecha-
nism uses the parameters c1, c2, where c1

2 < c2 < c1 <
1. These parameters will be chosen later to optimize
the revenue bound. The mechanism consists of two
phases:
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(i) Run proportional sharing for the environment
1
c1
· A~x ≤ ~1, but use the Truncated Proportional

Sharing TPS(c2) on each constraint. At the end
of the game(Nash equilibrium), we obtain an al-
location vector and a price pe on every constraint
e and the bid vector ~b at Nash equilibrium.

(ii) For the remaining resource 1
1−c1

A~x ≤ ~1, let pi =
1−c1
c1−c2

·∑e αe
i p

e. On the bidders that obtained c2 in
the first round, run RSPE*(~p), where the winning
bidders get 1 − c1 (instead of 1 as in Definition
4.2).

Our main result is the following.

Theorem 4.1 Given an arbitrarily small ε, there are
proper parameters c1, c2 such that the revenue at Nash
equilibrium of the mechanism TPM with these param-
eter is at least R

14+ε , where R is the benchmark defined
in Definition 4.1.

Remark The second phase of our mechanism is truth-
ful. Below, we will see that the equilibria in the first
round needs to satisfy some conditions. Therefore, if
in the truthful mechanism of the second round bid-
der bid truthfully, then all equilibria resulted by our
mechanism generates at least a constant factor of the
benchmark R.

We first derive a condition for a Nash equilibrium of
the general polyhedral settings. As described above,
we will consider the first phase of the mechanism as
if there were no second round. We then claim that
this condition also holds for Nash equilibrium of the
extended game with the second round. The precise
statement is the following.

Lemma 4.2 Consider the mechanism TPM in Defi-
nition 4.4. An allocation ~x and a bid vector ~b of the
first round is in a Nash solution if and only if
∑

i

αe
i xi ≤ c1 and 0 ≤ xi ≤ c2 ∀i and e ∈ E;

vj ≥
∑

e

pe
αe

j/c1

(1− αe
jxj/c1)

for xj = c2;

vj ≤
∑

e

pe
αe

j

c1
for xj = 0;

vj =
∑

e

pe
αe

j/c1

(1− αe
jxj/c1)

for 0 < xj < c2

where, pe =
∑

i be
i .

Proof. To see that this is the condition of a Nash equi-
librium without the second phase of the mechanism,
one can give a proof, which is exactly the same as
the proof of Theorem 2.4. We note here that A~x ≤ ~1
is the polyhedral form of a downward closed set sys-
tem, and we assume each bidder alone can receive the
service (otherwise, we can ignore this bider). There-
fore, max{xi : A~x ≤ ~1} = 1, hence in the environment∑

i αe
i xi ≤ c1 and 0 ≤ xi ≤ c2, the maximum resource

that each bidder can get is c2.

We now need to see that with the second round, this
condition is still the condition for Nash equilibrium of
the extended mechanism. Because of Lemma 4.1, if a
big bidder decreases his bid, he will get less than c2

and will not be able to enter the second round and he
would not increase the bid either, because by doing
so, he will need to pay more, but cannot affect the
strategies of any other bidders.

For the small bidders, we will show that if he in-
creases his bid in Nash equilibrium to get c2 unit of
resource to enter the second round the unit price that
he needs to pay is larger than his valuation. Because
we know that xi = 1 is a feasible solution, thus αe

i ≤ 1
for all i, e. Observe that if 0 ≤ xi < c2, then

vi = pe
∑

e

αe
j/c1

(1− αe
jxj/c1)

≤

≤ pe
∑

e

αe
j/c1

(1− c2/c1)
=

1
c1 − c2

∑
e

peαe
i .

Now, if bidder i increases the bids, pe will also in-
crease, and because in the second round, the price per
unit is at least 1

c1−c2

∑
e peαe

i for bidder i. Thus, bid-
der i cannot benefit from overbidding. ¤

We now show a lemma which bounds the revenue
obtained in the first round with the optimal social
welfare of the smaller bidders.

Lemma 4.3 Let N0 be the set of bidders whose valua-
tion vi ≤ 1

c1−c2

∑
e peαe

i . Let N1 be the set of bidders
obtaining less than c2, then we have N1 ⊂ N0 and

∑
e

1
c1 − c2

pe ≥ max
z≥0:Az≤1

∑

i∈N0

vizi ≥

≥ max
z≥0:Az≤1

∑

i∈N1

vizi.

Proof. Similar to the prove above, for 0 ≤ xi < c2,
we have

vi = pe
∑

e

αe
j/c1

(1− αe
jxj/c1)

≤
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≤ pe
∑

e

αe
j/c1

(1− c2/c1)
=

1
c1 − c2

∑
e

peαe
i .

This shows that N1 ⊂ N0. To show the inequality,
we use the duality theorem

max
z≥0

{∑

i

vizi : Az ≤ 1

}
≤

≤ min
w≥0

{∑
e

we :
∑

e

weαe
i ≥ vi

}
.

Recall that αe
i are the entries of matrix A. Applying

this duality lemma, in our case we = pe

c1−c2
. Thus, we

have ∑
e

1
c1 − c2

pe ≥ max
z:Az≤1

∑

i∈N0

vizi.

¤
We are now ready to prove our main theorem.

Proof of Theorem 4.1 The mechanism in the first
round gives us a partition of the bidders into N1

and N2, where N2 is the set of big bidders, who get
c2 > c1/2 fraction of the resource, and N1 is the set
of the remaining bidders (small bidders). Let ~y be an
allocation vector of the first round and ~z of the second
round of the mechanism. Let R1, R2 be the expected
revenue obtained in the first and second round, rela-
tively.

We first show that the large bidders form a feasible
set, that is, they can be served simultaneously. Re-
call that an allocation needs to satisfy xi + xj ≤ 1,
whenever bidder i and j do not belong to a feasible
set. In the first round of the mechanism, we scaled the
resource down by c1, therefore, if an allocation vector
~y satisfies yi + yj > c1, then i, j belong to a feasible
set and can be served simultaneously. We choose the
set N2 to be the bidders who get c2 > c1/2, therefore,
N2 is a feasible set.

Next, we show that the final allocation vector (~y+~z)
is feasible, that is A(~y + ~z) ≤ ~1. In the first round
we have that A~y ≤ ~c1. The second round allocates
resource to the bidders in N2. As shown above that N2

is a feasible set. This means that the allocation vector
~1N2 , which corresponds to servicing all the bidders in
N2, satisfies A~1N2 ≤ ~1. However, in the second round
of our mechanism, we allocate to each bidder at most
1 − c1, therefore, A~z ≤ (1 − c1)~1. From this we have
A(~y + ~z) ≤ ~1, which we need to show.

Finally, we prove an lower bound on the revenue of
our mechanism. According to Lemma 4.3, the revenue

obtained in the first round is at least

R1 ≥ (c1 − c2) max
z:Az≤1

∑

i∈N1

vizi.

Therefore,

R1

c1 − c2
≥ SocialOpt(N1). (1)

In the second round of the mechanism we run a
mechanism to extract F2(N2) from the bidders in N2

(scaled by 1− c1). Using Theorem 2.3, one would ex-
pect to have R2

1−c1
≥ F2(N2)

4 . However, the mechanism
we use in the second round is slightly different from
the mechanism RSPE of Definition 2.2. The bidder
i’s payment for 1 − c1 of the resource is the maxi-
mum of the price he would need to pay in the original
RSPE mechanism scaled by 1−c1 and 1−c1

c1−c2
·∑e αe

i p
e.

Therefore, we would get 0 revenue from bidder i with
vi < 1

c1−c2
·∑e αe

i p
e. However, according to Lemma

4.3, we have that R1
c1−c2

is at least the optimal so-
cial welfare of these bidders, hence if we would have a
weaker inequality as follow

R1

c1 − c2
+

R2

1− c1
≥ F2(N2)

4
. (2)

Thus, combining (1) and (2), we have

5
c1 − c2

R1 +
4

1− c1
R2 ≥ SocialOpt(N1) + F2(N2).

Choosing c1 = 5/7, c2 = 5/14 + ε′, where ε′ is posi-
tive but negligible, one have

5
5/14− ε′

R1 +
4

2/7
R2 ≥ SocialOpt(N1) + F2(N2).

Thus for any ε > 0, we can choose ε′ > 0 such that

(14 + ε)(R1 + R2) ≥ SocialOpt(N1) + F2(N2).

This is what we need to prove. ¤

5 Conclusions

We have introduced a new mechanism: a combina-
tion of two natural and well known classes of auctions.
It is proved that our mechanism is completive against
a worst-case revenue benchmark that no truthful auc-
tion can obtain a constant approximation.

We believe this is only a beginning step in the di-
rection of designing non-truthful mechanisms. There
are several open questions, such as, defining a more
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systematic framework for natural mechanisms in full
information Nash implementation settings; defining
better benchmarks and designing simple mechanisms
that bidders can use decentralized learning dynamics
to find Nash equilibria.
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A Appendix

A.1 Proof of Theorem 2.1

Denote a {0, 1} vector that corresponds to the al-
location that gives service to all bidder in a feasible
set S by ~1S . A randomized outcome that output ~1S

with probability pS is
∑

S pS
~1S . Thus, all possible

randomized outcome is the set of the convex hull the
vectors ~1S , for all feasible set S. We call this convex
hull H.

We need to show that if the set system is downward-
closed then there is a nonnegative matrix A such that
the convex hull can be captured as H = {~x : A~x ≤
~1, ~x ≥ ~0}.

In order to see this, we need to show that, given a
vector ~x ∈ H then any vector ~0 ≤ ~y ≤ ~x is also in the
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convex hull. If we know this fact then by simple facts
in convex geometry, one can see that that for every
z 6∈ H, there exists a non-negative vector ~a such that
~aT ~w ≤ 1 < ~aT~z ∀~w ∈ H. And this will prove our
theorem.

Now, for ~x ∈ H and ~0 ≤ ~y ≤ ~x, we need to show
that ~y ∈ H. We will prove this by induction on the
number of coordinate of ~y that are smaller than the
corresponding coordinates of ~x. Let i be a coordinate
such that yi < xi. Consider the vector ~x′ and ~x′′

whose all the coordinates are equal to ~x, except x′i = yi

and x′′i = 0 respectively. First, ~x′ is in the convex hull
of ~x and ~x′′. Secondly, if ~x =

∑
pS

~1S then ~x′′ =∑
pS

~1S−i and because the property of the downward
closed system, we have ~x′′ ∈ H. Therefore ~x′ ∈ H.

Next we use the induction step. ~y ≤ ~x′, ~x′ ∈ H and
the number of coordinate j of ~y such that yj < x′j is
strictly less than when compared with ~x. By this we
finished the proof.

A.2 Proof of Theorem 2.3

As we discussed above, the profit of RSPE
is min(R’,R”). Thus, we just need to analyze
E[min(R′, R′′)]. Assume that F2(b) = kp has with
k ≥ 2 winners at price p. Of the k winners in F2,
let k′ be the number of them that are in b′ and k′′ the
number that are in b′′. Because there are k′ bidders
in b′ at price p, R′ ≥ k′p. Likewise, R′′ ≥ k′′p. Thus,

E[RSPE(b)]
F2(b)

=
E[min(R′, R′′)]

kp
≥

≥ E[min(k′p, k′′p)]
kp

=
E[min(k′, k′′)]

k
≥ 1

4
.

The last inequality follows from the fact that if k ≥ 2
fair coins (corresponding to placing the winning bid-
ders into either b′ or b′′) are flipped then

E[min{#heads,#tails}] =
b k

2 c∑

i=0

i ·
(

k

i

)
1
2k
≥ k

4
.

The equality occurs when k = 2.

A.3 Proof of Theorem 2.4

We will analyze the condition for an equilibrium for
this game and we will use these conditions to show

that an equilibrium always exists. First, we will dis-
cuss the game with price taking strategies to gain some
intuitions.

Price taking strategy. Kelly [9] has considered a
version of this “game” when prices are assigned by
the auctioneer, and bidders are “price takers” in the
sense that they act to optimize their value at the given
prices. We can also view our fair-sharing game as a
pricing game, but in our game the prices are deter-
mined as part of the game. However, it is useful to
compare the mechanism above with a game where bid-
ders behave as price takers.

Consider an equilibrium of the game, it must be
the case that xe

j = xj for all constraints e that costs
money, or otherwise bidder j can reduce her bid be

j

without affecting her allocation. One way to think
about the mechanism above is the following: Bidders
decide on each constraint a price pe =

∑
j be

j ; now
bidders have to pay for each constraint e at its unit
price pe. For each bidder i, when getting a share of xi,
he uses up αe

i xi on the constraint e, and hence needs
to pay peαe

i xi on e. In order to get all the needed
resources bidder i must pay a unit price of

∑
e αe

i p
e

for his resource.

Now, if we assume that the price pe are given, then
for each bidder i the unit price is fixed. Therefore to
maximize her utility, bidder i will maximize his utility,
that is Ui(xi) −

∑
e peαe

i xi. Taking the derivative in
xi to determine the optimal value for bidder i we see
that bidder i will choose to buy an xi such that: the
derivative U ′

i(xi) is equal to the unit price or in the
case U ′

i(0) is less than the unit price, she will choose
not to buy any resource. We rewrite this as follow:

U ′
i(xi) =

∑
e

αe
i p

e OR

xi = 0 if U ′
i(0) <

∑
e

αe
i p

e.

Nash condition. The issue by using the price tak-
ing game as an approximation for our mechanism is
that the prices pe are not fixed. For example, when a
constraint e has only a single bidder having a positive
coefficient αe

i , then pe = 0. For this types of con-
straints, we will consider them as upper bounds on
maximum resource that bidder i can get (this will be
discussed in more details below). We now consider the
constraints e that have at least two positive coefficient
αe

i .

Consider a set of bids be
i , and a resulting allocation

x, where bidder i gets allocation xi. When is this
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allocation at equilibrium? For each constraint e we
use pe =

∑
i be

i , the sum of the bids, as the unit price of
the constraint. We prove a more general version of the
theorem, where each bidder has a concave, monotone
increasing utility function Ui(xi).

Now consider the optimization problem of a bid-
der j assuming bids be

i for all other bidders are set.
The bidder j is interested in maximizing her utility at
Uj(xj) −

∑
e be

j . At equilibrium, it must be the case
that xe

j = xj for all constraints e that costs money, or
otherwise bidder j can reduce her bid be

j without af-
fecting her allocation. So we can think of the bidder’s
optimization problem as dependent on one variable xj ,
the allocation she will receive. What bid does bidder
j have to submit for a constraint e to get allocation
xe

j = xj? Bids must satisfy the following condition:

If be
j > 0 then: αe

jxj =
be
j∑
i be

i

.

Assuming all other bids be
i are fixed, we can express

the bid be
j needed as follows.

be
j(xj) =

αe
jxj

∑
i 6=j be

i

1− αe
jxj

.

Note that this expression assumes that αjxj < 1, that
is, j is not the only bidder on the constraint at equi-
librium. It is not hard to see that this is guaranteed
by having at least bidders for each constraint.

Bidder j will want to choose xj to maximize her util-
ity. For this end, it will useful to express the derivative
of the bid be

j when viewed as a function of xj . We get
the following (again assuming αjxj < 1):

∂

∂xj
be
j(xj) =

αe
j

∑
i 6=j be

i

(1− αe
jxj)2

.

Substituting
∑

i 6=j be
i = pe(1 − αe

jxj) and simplifying
we get that

∂

∂xj
be
j(xj) =

peαe
j

1− αe
jxj

.

Note that in the calculation above we assume that
for all constraints e there are at least 2 bidders. For
a constraint e that has only one bidder i (with posi-
tive αe

i ), then bidder i would bid 0 and request the
maximum resource that he can get on this constraint,
which is 1

αe
i
. Recall that ai is the maximum resource

that bidder i can get thus, ai ≤ 1
αe

i
. Therefore we can

ignore these types of constraints and consider the fol-
lowing optimization problem of bidder j. She wants to
maximize her utility Uj(xj)−

∑
e be

j subject to xj ≤ aj ,
which can now be expressed as

max
xj

Uj(xj)−
∑

e

αe
jxj

∑
j 6=i be

i

1− αe
jxj

, sbjt. xj ≤ aj .

The function above is a concave function of xj . Thus,
there are three possibilities:

(i) the maximum occurs at a value xj , where the
derivative of this function 0,

(ii) if the derivative is negative everywhere, maximum
occurs at xj = 0,

(iii) xj = aj if the derivative at aj is at least 0. Using
the derivatives we computed above, we get the deriva-
tive of bidder jth utility as a function of her allocation
xj to be

U ′
j(xj)−

∑
e

peαe
j

(1− αe
jxj)

.

This derivative is a strictly decreasing function, so we
have the following Nash condition

∑
i αexi ≤ 1; xi ≥ 0 for all e ∈ E and all i;

U ′
j(xj) =

∑
e

peαe
j

(1−αe
jxj)

if xj > 0;

U ′
j(0) ≤ ∑

e peαe
j if xj = 0;

U ′
j(ai) ≥

∑
e

peαe
j

(1−αe
jxj)

if xj = ai.

And in this condition, we ignore all the constraints e
that has a single positive coefficient αe

i .

To see that there is always a Nash equilibrium, ob-
serve the game we define above is a concave n-person
game: each payoff function is continuous in the com-
posite strategy vector ~bi, and the strategy space of
each bidder is a compact, convex, nonempty subset of
R|E|. Applying Rosen’s existence theorem [18] (proved
using Kakutani’s fixed point theorem), we conclude
that a Nash equilibrium exists for this game. By this,
we finished the proof.
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