
Innovations in Computer Science 2011

Ideal Forms of Coppersmith’s Theorem

and Guruswami-Sudan List Decoding

Henry Cohn∗ Nadia Heninger?

∗Microsoft Research New England, One Memorial Drive, Cambridge, MA 02142
?Department of Computer Science, Princeton University, Princeton, NJ 08540

cohn@microsoft.com nadiah@cs.princeton.edu

Abstract: We develop a framework for solving polynomial equations with size constraints on solutions. We
obtain our results by showing how to apply a technique of Coppersmith for finding small solutions of polynomial
equations modulo integers to analogous problems over polynomial rings, number fields, and function fields. This
gives us a unified view of several problems arising naturally in cryptography, coding theory, and the study of
lattices. We give (1) a polynomial-time algorithm for finding small solutions of polynomial equations modulo
ideals over algebraic number fields, (2) a faster variant of the Guruswami-Sudan algorithm for list decoding
of Reed-Solomon codes, and (3) an algorithm for list decoding of algebraic-geometric codes that handles both
single-point and multi-point codes. Coppersmith’s algorithm uses lattice basis reduction to find a short vector
in a carefully constructed lattice; powerful analogies from algebraic number theory allow us to identify the
appropriate analogue of a lattice in each case and provide efficient algorithms to find a suitably short vector,
thus allowing us to give completely parallel proofs of the above theorems.

Keywords: Coppersmith’s theorem, list decoding, lattice basis, reduction, cryptanalysis, coding theory.

1 Introduction

Many important problems in areas ranging from
cryptanalysis to coding theory amount to solving poly-
nomial equations with side constraints or partial in-
formation about the solutions.

One of the most important cases is solving equations
given size bounds on the solutions. Coppersmith’s al-
gorithm is a celebrated technique for finding small so-
lutions to polynomial equations modulo integers, and
it has many important applications in cryptography,
particularly in the cryptanalysis of RSA.

In this paper, we show how the ideas of Copper-
smith’s theorem can be extended to a more gen-
eral framework encompassing the original number-
theoretic problem, list decoding of Reed-Solomon and
algebraic-geometric codes, and the problem of find-
ing solutions to polynomial equations modulo ideals
in rings of algebraic integers. These seemingly differ-
ent problems are all perfectly analogous when viewed
from the perspective of algebraic number theory.

Coppersmith’s algorithm provides a key example
of the power of lattice basis reduction. In order to

extend the method beyond the integers, we examine
the analogous structures for polynomial rings, number
fields, and function fields. Ideals over number fields
have a natural embedding into a lattice, and thus we
can find a short vector simply by applying the LLL
algorithm to this canonical embedding. In contrast
to integer lattices, it turns out that lattice basis re-
duction is much easier over a lattice of polynomials,
and in fact a shortest vector can always be found in
polynomial time. Recasting the list decoding prob-
lem in this framework allows us to take advantage of
very efficient reduction algorithms and thus achieve
the fastest known list decoding algorithm for Reed-
Solomon codes.

To extend this approach to function fields, we must
overcome certain technical difficulties. In addition,
we prove a much more general result about find-
ing short vectors under arbitrary non-Archimedean
norms, which may have further applications beyond
list decoding of algebraic-geometric codes. As an il-
lustration of the generality of our approach, we give
the first list decoding algorithm that works for all
algebraic-geometric codes, not just those defined using
a single-point divisor.

In the remainder of the introduction, we set up our

298

IDEAL FORMS OF COPPERSMITH’S THEOREM AND GURUSWAMI-SUDAN LIST DECODING

framework with a brief review of Coppersmith’s theo-
rem, and then state our theorems on polynomial rings,
number fields, and function fields.

1.1 Coppersmith’s theorem

The following extension of Coppersmith’s theorem
[9]was developed by Howgrave-Graham [20] and May
[29].

Theorem 1.1([9,20,29]). Let f(x) be a monic poly-
nomial of degree d with coefficients modulo an integer
N > 1, and suppose 0 < β ≤ 1. In time polynomial in
log N and d, one can find all integers w such that

|w| 6 Nβ2/d

and
gcd(f(w), N) ≥ Nβ .

Note that when β = 1, this amounts to finding
all sufficiently small solutions of f(w) ≡ 0 (mod N),
and the general theorem amounts to solving f(w) ≡ 0
(mod B), where B is a large factor of N .

We give a brief example to illustrate the power of
this theorem in cryptography [9,20]. Imagine that an
adversary has obtained through a side-channel attack
some knowledge about one of the prime factors p of an
RSA modulus N = pq, for example some of its most
significant bits. We denote this known quantity by r.
Then we may write p = r + w, where the bound on w
depends on how many bits of p are known. Suppose
more than half of the bits have leaked, i.e., 0 ≤ w ≤
N1/4−o(1) (we assume, as is typical, that p and q are
both N1/2+o(1)). Now let f(x) = x+ r and β = 1/2+
o(1). Theorem 1.1 tells us that we can in polynomial
time learn w, and hence p, thereby factoring N .

Further applications of this theorem in cryptogra-
phy include other partial key recovery attacks against
RSA [5,7], blomer:rsa, attacks on stereotyped mes-
sages and improper padding [9], and the proof of se-
curity for the RSA-OAEP+ padding scheme [35]. See
[30] for many other applications.

It is remarkable that Theorem 1.1 allows us to solve
polynomial equations modulo N without knowing the
factorization of N , and this fact is critical for the
cryptanalytic applications. However, even if one al-
ready has the factorization, Theorem 1.1 remains non-
trivial if N has many prime factors.

To solve an equation modulo a composite number,

one generally solves the equation modulo each prime
power factor of the modulus and uses the Chinese re-
mainder theorem to construct solutions for the origi-
nal modulus. (Recall that modulo a prime, such equa-
tions can be solved in polynomial time, and we can use
Hensel’s lemma to lift the solutions to prime power
moduli.) The number of possible solutions can be ex-
ponential in the number of prime factors, in which
case it is infeasible to enumerate all of the roots and
then select those that are within the desired range.
In fact, the problem of determining whether there is a
root in an arbitrary given interval is NP-complete [27].
Of course, if N has only two prime factors, then there
can be only d2 solutions modulo N , but our methods
are incapable of distinguishing between numbers with
two or many prime factors.

It is not even obvious that the number of roots mod-
ulo N of size at most N1/d is polynomially bounded.
From this perspective, the exponent 1/d is optimal
without further assumptions, because f(x) = xd will
have exponentially many roots modulo N = kd of ab-
solute value at most N1/d+ε (specifically, the 2Nε such
multiples of k). Theorem 1.1 can be seen as a con-
structive bound on the number of solutions. See [10]
for further discussion of this argument and [23] for
non-constructive bounds.

1.2 A polynomial analogue

To introduce our analogies, we will begin with the
simplest and most familiar case: polynomials.

There is an important analogy in number theory
between the ring Z of integers and the ring F [z] of
univariate polynomials over a field F . To formu-
late the analogue of Coppersmith’s theorem, one just
needs to recognize that the degree of a polynomial is
the appropriate measure of its size. Thus, the poly-
nomial version of Coppersmith’s theorem should in-
volve finding low-degree solutions of polynomial equa-
tions over F [z] modulo a polynomial p(z). That is,
given a polynomial f(x) =

∑d
i=0 fi(z)xi with coeffi-

cients fi(z) ∈ F [z], we seek low-degree polynomials
w(z) ∈ F [z] such that f(w(z)) ≡ 0 (mod p(z)).

In the following theorem, we assume that we can ef-
ficiently represent and manipulate elements of F , and
that we can find roots in F [z] of polynomials over F [z].
For example, that holds if we can factor bivariate poly-
nomials over F in polynomial time. This assumption
holds for many fields, including Q and even number
fields [24] as well as all finite fields [16] (with a ran-

299

H. COHN, N. HENINGER

domized algorithm in the latter case).

Theorem 1.2. Let f(x) be a monic polynomial in
x of degree d over F [z] with coefficients modulo p(z),
where degz p(z) = n > 0. In polynomial time, for
0 < β ≤ 1, one can find all w(z) ∈ F [z] such that

degz w(z) < β2n/d

and
degz gcd(f(w(z)), p(z)) ≥ βn.

In the case when p(z) factors completely into linear
factors, this theorem is equivalent to the influential
Guruswami-Sudan theorem on list decoding of Reed-
Solomon codes [19]. See Section 4.1 for the details of
the equivalence. The above statement of Theorem 1.2,
as well as the extension to higher-degree irreducible
factors, appear to be new.

It has long been recognized that the Coppersmith
and Guruswami-Sudan theorems are in some way
analogous, although we are unaware of any previous,
comparably explicit statement of the analogy. Boneh
used Coppersmith’s theorem in work on Chinese re-
mainder theorem codes inspired by the Guruswami-
Sudan theorem [6], and in a brief aside in the mid-
dle of [3], Bernstein noted that the Guruswami-Sudan
theorem is the polynomial analogue of a related theo-
rem of Coppersmith, Howgrave-Graham, and Nagaraj
[11]. See also [18] for a general ideal-theoretic setting
for coding theory, and [36] for a survey of relationships
between list decoding and number-theoretic codes.

1.3 Number fields

A number field is a finite extension of the field Q
of rational numbers. Thus it is natural to investigate
how a statement over the rationals, the simplest num-
ber field, extends to more general number fields. We
extend our analogy by adapting Coppersmith’s theo-
rem to the number field case.

Every number field K is of the form

K = Q(α)

= {a0 + a1α + · · ·+ an−1α
n−1 : ai ∈ Q},

where α is an algebraic number of degree n (i.e., a
root of an irreducible polynomial of degree n over Q).
The degree of K is defined to be n. Within K, there
is a ring OK called the ring of algebraic integers in K.
It plays the same role within the field K as the ring Z
of integers plays within Q.

In OK , we study the solutions of polynomial equa-
tions modulo ideals, the analogue of working modulo
integers in Z. (Recall that an ideal is a non-empty sub-
set closed under addition and under multiplication by
arbitrary elements of a ring; intuitively, it is a subset
modulo which one can reduce ring elements.) Addi-
tionally, elements of OK have n absolute values com-
ing from n embeddings of K into C, and to formulate
our theorem we must bound them all. (See Section 5.)

The number field analogue of Coppersmith’s theo-
rem is as follows:

Theorem 1.3. Let K be a number field of degree
n with ring of integers OK , f(x) ∈ OK [x] a monic
polynomial of degree d, and I (OK an ideal in OK .
Assume that we are given OK and I explicitly by inte-
gral bases. For 0 < β ≤ 1 and λ1, . . . , λn > 0, in time
polynomial in the input length and exponential in n2

we can find all w ∈ OK with |w|i < λi such that

N(gcd(f(w)OK , I)) > N(I)β ,

provided that ∏

i

λi < N(I)β2/d.

Furthermore, in polynomial time we can find all such
w provided that

∏

i

λi < (2 + o(1))−n2/2N(I)β2/d.

Equivalently, we can find small solutions of equa-
tions f(x) ≡ 0 (mod J), where the ideal J is a large
divisor of I. Using improved lattice basis reduction
algorithms [2] we can achieve slightly subexponen-
tial behavior in n2. Note also that gcd(f(w)OK , I)
is the largest ideal that contains both the principal
ideal f(w)OK and I; in other words, it is their sum
f(w)OK + I.

Section 5 explains the techniques required to prove
Theorem 1.3; see [8] for a full proof.

Recently, Peikert and Rosen [32] and Lyubashevsky,
Peikert, and Regev [26] developed lattice-based cryp-
tographic schemes using lattices representing the
canonical embeddings of ideals in number fields. As a
special case, Theorem 1.3 can be used to solve certain
cases of the bounded-distance decoding problem for
such lattices, and improving our approximation factor
from (2 + o(1))−n2/2 to 2−n

√
|∆K |, where ∆K is the

discriminant of K, would solve the problem in general;
see [8] for more details.

300

IDEAL FORMS OF COPPERSMITH’S THEOREM AND GURUSWAMI-SUDAN LIST DECODING

In addition, number fields have many applications
to purely classical problems, the most prominent ex-
ample being the number field sieve factoring algo-
rithm. All sieve algorithms require generating smooth
numbers, and in this context Boneh [6] showed how
to use Coppersmith’s theorem to find smooth inte-
ger solutions of polynomials in short intervals. Using
Theorem 1.3 analogously, one can do the same over
number fields.

1.4 Function fields

Algebraic number theorists have developed a more
sophisticated version of the analogy between the ring
of integers and polynomial rings. In this analogy, the
analogues of number fields are called function fields;
they are the fields of rational functions on algebraic
curves over finite fields. The parallels between num-
ber fields and function fields are truly astonishing, and
this analogy has played a crucial role in the develop-
ment of number theory over the last century.

We now complete the analogy by extending Cop-
persmith’s theorem to the function field case. See [8]
for a review of the setting and notation.

Theorem 1.4. Let X be a smooth, projective, ab-
solutely irreducible algebraic curve over Fq, and let K
be its function field over Fq. Let D be a divisor on X
whose support supp(D) is contained in the Fq-rational
points X (Fq), let S be a subset of X (Fq) that properly
contains supp(D), let OS be the subring of K consist-
ing of functions with poles only in S, and let L(D) be
the Riemann-Roch space

L(D) = {0} ∪ {f ∈ K∗ : (f) + D º 0}.
Let f(x) ∈ OS [x] be a monic polynomial of degree d,
and let I be a proper ideal in OS.

Then in probabilistic polynomial time, we can find
all w ∈ L(D) such that

N(gcd(f(w)OS , I)) ≥ N(I)β ,

provided that

qdeg(D) < N(I)β2/d.

In the case when S contains only a single point,
the function field version of Coppersmith’s theorem is
equivalent to the Guruswami-Sudan theorem on list-
decoding of algebraic-geometric codes, as outlined in
[8]. The Guruswami-Sudan theorem and the earlier

Shokrollahi-Wasserman theorem [34] are specialized to
that case, which covers many but not all algebraic-
geometric codes. Our theorem extends list decoding
to the full range of such codes.

We assume that we can efficiently compute bases
of Riemann-Roch spaces for divisors in X . That
can be done in many important cases (for example,
for a smooth plane curve, or even one with ordinary
multiple points [21]), and it is a reasonable assump-
tion because even the encoding problem for algebraic-
geometric codes requires a basis of a Riemann-Roch
space. Note also that although our algorithm is prob-
abilistic, it is guaranteed to give the correct solution
in expected polynomial time; in other words, it is a
“Las Vegas” algorithm.

Section 6 explains the techniques required to prove
Theorem 1.4; see [8] for a full proof.

1.5 Analogies in number theory

The connections we have described are not isolated
phenomena. Many theorems in number theory and al-
gebraic geometry have parallel versions for the integers
and for polynomial rings, or more generally for num-
ber fields and function fields, and translating state-
ments or techniques between these settings can lead
to valuable insights.

One particular advantage of this sort of arbitrage
is that proving results for polynomial rings is usually
easier. For example, the prime number theorem for Z
is a deep theorem, but the analogue for the polynomial
ring Fq[z] over a finite field is much simpler. It says
that asymptotically a 1/n fraction of the qn monic
polynomials of degree n are irreducible, and in fact
the error term is on the order of qn/2 (see Lemma
14.38 in [15]). Proving a similarly strong version of
the prime number theorem for Z would amount to
proving the Riemann hypothesis. Similarly, the ABC
conjecture for Z is a profound unsolved problem, while
for polynomials rings it has an elementary proof [28].

Thus, polynomial rings are worlds in which many
of the fondest dreams of mathematicians have come
true. If a result cannot be proved in such a setting,
then it is probably not even worth trying to prove it
in Z. If it can be proved for polynomial rings, then
the techniques may not apply to the integers, but they
often provide inspiration for how a proof might work
if technical obstacles can be overcome.

301

H. COHN, N. HENINGER

Similarly, in computer science many computational
problems that appear to be hard for integers are
tractable for polynomials. For example, factoring
polynomials can be done in polynomial time for many
fields, while for the integers the problem seems to be
hard. The polynomial analogue of the shortest vector
problem for lattices can be solved exactly in polyno-
mial time [14], while for integer lattices the problem is
NP-hard [1]. This difference in the difficulty of lattice
problems is at the root of the poor running time in
Theorem 1.3 for number fields of high degree.

2 Preliminaries

One of the main steps in Coppersmith’s theorem
uses lattice basis reduction to find a short vector in
a lattice. In this section, we will review preliminaries
on integral lattices, and introduce the analogues that
we will use in our generalizations.

2.1 Integer lattices

Recall that a lattice in Rm is a discrete subgroup
of rank m. Equivalently, it is the set of integer linear
combinations of a basis of Rm.

The determinant det(L) of a lattice L is the abso-
lute value of the determinant of any basis matrix; it
is not difficult to show that it is independent of the
choice of basis. One way to see why is that the deter-
minant is the volume of the quotient Rm/L, or equiv-
alently the volume of a fundamental parallelotope.

One of the fundamental problems in lattice theory
is finding short vectors in lattices, with respect to the
`p norm

|v|p =

(
m∑

i=1

|vi|p
)1/p

.

Most often we use the `2 norm, which is of course
the usual Euclidean distance. The LLL lattice basis
reduction algorithm [25] can be used to find a short
vector in a lattice.

Theorem 2.1 ([25]). Given a basis of a lattice L in
Qm, a nonzero vector v ∈ L satisfying

|v|2 6 2(m−1)/4 det(L)1/m

can be found in polynomial time.

Note that the LLL algorithm’s input is a rational
lattice, and the rationality plays an important role in

the running time analysis. In the proof of Theorem
1.3, we must apply it to a lattice whose basis vectors
are not in Qm; however, for our purposes using a close
rational approximation suffices.

2.2 Polynomial lattices

If R is the polynomial ring F [z] over a field F , then
we define a polynomial lattice to be a free module over
F [z] of finite rank. A polynomial lattice will usually
be generated by a basis of vectors whose coefficients
are polynomials in z. Vectors in our polynomial lattice
will be linear combinations of the basis vectors (where
the coefficients are also polynomials in z).

An appropriate definition of the length (i.e., degree)
of such a lattice vector is the maximum degree of its
coordinates:

degz(v1(z), v2(z), . . . , vm(z)) = max
i

degz vi(z).

(2.1)
This defines a non-Archimedean norm. In fact, for
lattices with a norm defined as above, it is possible to
find the exact shortest vector in polynomial time (see,
for example, [14]).

Lattices of polynomials have been well studied be-
cause of their applications to the study of linear sys-
tems [22]. There are several notions of basis reduction
for such lattices. A basis is column-reduced (or, as
appropriate, row-reduced) if the degree of the deter-
minant of the lattice (i.e., of a basis matrix) is equal
to the sum of the degrees of its basis vectors. Such
bases always contain a minimal vector for the lattice,
and m-dimensional column reduction can be carried
out in mω+o(1)D field operations [17], where ω is the
exponent of matrix multiplication and D is the great-
est degree occurring in the original basis of the lattice.

In particular, for an m-dimensional lattice L with
the norm (2.1), the above algorithms are guaranteed
to find a nonzero vector v for which

deg v ≤ 1
m

deg det L, (2.2)

where detL denotes the determinant of a lattice basis.

2.3 Finding short vectors under
general non-Archimedean norms

The above algorithms are specialized to norms de-
fined by (2.1). In fact, for all non-Archimedean norms,
one can find a vector satisfying the equivalent of (2.2)

302

IDEAL FORMS OF COPPERSMITH’S THEOREM AND GURUSWAMI-SUDAN LIST DECODING

in a lattice by solving a system of linear equations.
Solving this system may be less efficient than a spe-
cialized algorithm, but it gives a general approach that
works in polynomial time for any norm. See [8] for the
details.

3 Coppersmith’s theorem

We now review how Coppersmith’s method works
over the integers, as this provides a template for the
techniques we will apply later. We will follow the ex-
position of May [30].

Let f(x) be a monic univariate polynomial of degree
d, and N an integer of potentially unknown factoriza-
tion. We wish to find all small integers w such that
gcd(f(w), N) is large.

To do so, we will choose some positive integer k (to
be determined later) and look at integer combinations
of the polynomials xjf(x)iNk−i. If B divides both N
and f(w), then Bk will divide wjf(w)iNk−i and thus
also any linear combination of such polynomials.

Let

Q(x) =
∑

i,j

ai,jx
jf(x)iNk−i =

∑

i

qix
i,

for some coefficients ai,j and qi to be determined. We
will choose Q so that the small solutions to our original
congruence become actual solutions of Q(x) = 0 in the
integers. This will allow us to find w by factoring Q(x)
over the rationals. The construction of Q tells us that

Q(w) ≡ 0 (mod Bk). (3.1)

If in addition we have a lower bound Nβ on the size
of B, and we can show that

|Q(w)| < Nβk ≤ Bk, (3.2)

then Q(w) = 0 and we may find w by factoring Q. In
fact, this observation tells us that we can find all such
w in this way. A similar observation will appear in all
of our proofs.

In the case of the integers, we introduce the bound
|w| < X on our roots, and the triangle inequality tells
us that

|Q(w)| 6
∑

i

|qi|Xi. (3.3)

To finish the theorem, we will show that if X is suffi-
ciently small, then we can choose Q so that its coeffi-
cients qi satisfy

∑

i

|qi|Xi < Nβk. (3.4)

We are now ready to prove Coppersmith’s theorem
for the integers.

Proof of Theorem 1.1. Having outlined the general
technique above, it remains to be shown that we can
construct a polynomial Q(x) whose coefficients satisfy
the bound in (3.4).

The polynomial Q(x) will be a linear combination
of the polynomials

xjf(x)iNk−i for 0 6 i < k and 0 6 j < d

and
xjf(x)k for 0 6 j < t.

The right-hand side of (3.3) is the `1 norm of the
vector of coefficients of the polynomial Q(xX), which
in turn will be a linear combination of the polynomi-
als (xX)jf(xX)iNk−i. Finding our desired Q(x) is
thus equivalent to finding a suitably short vector in
the lattice L spanned by the coefficient vectors of the
polynomials (xX)jf(xX)iNk−i.

To compute the determinant of this lattice, we can
order the basis vectors by the degrees of the poly-
nomials they represent to obtain an upper triangular
matrix whose determinant is the product of the terms
on the diagonal:

det(L) =
∏

06i<dk+t

Xi
∏

06j6k

Ndj

= X(dk+t−1)(dk+t)/2Ndk(k+1)/2.

Set m = dk + t. We can use the LLL algorithm [25]
to find a vector v whose `2 norm is bounded by

|v|2 6 2(m−1)/4 det(L)1/m.

By Cauchy-Schwarz, |v|1 6 √
m |v|2, and hence when-

ever |w| < X,

|Q(w)| 6 √
m2(m−1)/4 det(L)1/m.

We assume m ≥ 7, and use the weaker bound

|Q(w)| 6 2(m−1)/2 det(L)1/m.

To prove inequality (3.2), we must show that

2(m−1)/2
(
Xm(m−1)/2Ndk(k+1)/2

)1/m

< Nβk.

This inequality is equivalent to

(2X)(m−1)/(2k)Nd(k+1)/(2m) < Nβ . (3.5)

303

H. COHN, N. HENINGER

Applying Lemma 3.1 below with ` = log 2X and
n = log N , we obtain parameters k and t such that
(3.5) holds for

2X < Nβ2/d−ε.

To eliminate ε from the statement of the theorem, take
ε < 1

log2 N . Then our bound becomes X ≤ 1
4Nβ2/d.

We can divide the interval [−Nβ2/d, Nβ2/d] into four
intervals of width 2X and solve the problem for each
interval by finding solutions for the polynomials f(x−
3X), f(x −X), f(x + X), and f(x + 3X). Thus, we
achieve a bound of X ≤ Nβ2/d, as desired. ¤

We end with a brief lemma that will tell us how to
optimize our parameters in equation (3.5).

Lemma 3.1. The inequality `m−1
2k + ndk+1

2m < nβ

is satisfied for ` < n
(

β2

d − ε
)
, any m ≥

⌈
2β
ε

⌉
, and

k =
⌊

βm
d − 1

⌋
.

As intuition, note that if we set the two terms
`m−1

2k and ndk+1
2m roughly equal to nβ

2 , then we have
`m2 ≈ ndk2 ≈ nβmk and hence ` ≈ nβ2/d. The
proof amounts to making this precise.

Proof. It suffices to show that these values of m and
k satisfy n

(
β2

d − ε
)

m−1
2k < nβ

2 and ndk+1
2m ≤ nβ

2 .

The first inequality is equivalent to k
m−1 > β

d − ε
β .

Similarly, the second is equivalent to k+1
m ≤ β

d . If

we set k =
⌊

βm
d − 1

⌋
, then k+1

m ≤ β
d , so the second

inequality is satisfied. If in addition we take m ≥ 2β
ε ,

then εm
β ≥ 2 and hence k > βm

d − 2 ≥ βm
d − εm

β . It
follows that k m

m−1 > βm
d − εm

β , which is equivalent to
the first inequality. ¤

Note that improving the approximation factor for
the length of the short lattice vector that we find will
only improve the constants and running time of the
theorem, but will not provide an asymptotic improve-
ment to the bound Nβ2/d on |w|.

4 Polynomials and Reed-Solomon
list decoding

In this section, we show how to prove Theorem 1.2
using an approach analogous to that of the previous
section. Guruswami and Sudan’s technique for list de-
coding of Reed-Solomon codes [19] is similar in that it
involves constructing a bivariate polynomial that van-

ishes to high order at particular points. To construct
such a polynomial, they write each vanishing condi-
tion as a set of linear equations on the coefficients of
the polynomial under construction. The linear equa-
tions can be solved to obtain the desired polynomial,
and the polynomial factored to obtain its roots.

Similarly, the polynomials used in Coppersmith’s
method are constructed in order to vanish to high or-
der, the condition ensured by equation (3.1). The con-
ceptual difference is that this condition follows from
the form of the lattice basis, rather than being im-
posed as linear constraints. With the right definition
of lattice basis reduction in the polynomial setting, we
can emulate the proof from the integer case.

We regard f(x) as a polynomial in x with coeffi-
cients that are polynomials in the variable z. To prove
Theorem 1.2, we would like to construct a polynomial
Q(x) over F [z] from the polynomials xjf(x)ip(z)k−i.
If b(z) divides both p(z) and f(w(z)), then b(z)k di-
vides w(z)jf(w(z))ip(z)k−i and thus also any linear
combination of such polynomials.

Instead of an integer combination of these polyno-
mials, we will allow coefficients that are polynomials
in z. Let

Q(x) =
∑

i,j

ai,j(z)xjf(x)ip(z)k−i =
∑

i

qi(z)xi.

If we have an upper bound ` on the degree of our
root w(z), then the degree of Q(w(z)) will be

degz Q(w(z)) ≤ max
i

(degz qi(z) + `i).

If similarly we have a lower bound nβ on the degree
of b(z), then if we know that both

Q(w(z)) ≡ 0 (mod b(z)k)

and
degz Q(w(z)) < nβk ≤ k degz b(z), (4.1)

then we may conclude that

Q(w(z)) = 0.

To find a polynomial satisfying inequality (4.1), we
construct a lattice of polynomials. From this point on,
the analysis of the proof is almost exactly the same as
in the integer case. The major differences are that an
exact shortest vector in the lattice can be found, so
there is no approximation factor, and that in place of
the element X which bounds the size of the root, we
use the polynomial z`.

304

IDEAL FORMS OF COPPERSMITH’S THEOREM AND GURUSWAMI-SUDAN LIST DECODING

See [8] for full proof.

We cannot achieve degree equal to β2n/d (as op-
posed to strict inequality): for infinite F , the equa-
tion xd ≡ 0 (mod p(z)d) has infinitely many solutions
x = c p(z).

4.1 Reed-Solomon list decoding and
noisy polynomial interpolation

A Reed-Solomon code is determined by evaluating
a polynomial w(z) ∈ Fq[z] of degree at most ` at a
collection of distinct points (x1, . . . , xn) to obtain a
codeword (w(x1), . . . , w(xn)). In the Reed-Solomon
decoding problem, we are provided with (y1, . . . , yn),
where at most e values have changed, and we want to
recover w(z) by finding a polynomial of degree at most
` that fits at least n−e points (xi, yi). Guruswami and
Sudan [19] showed how to correct up to e = n−

√
n`

errors by providing a list of all possible decodings.

In the noisy polynomial interpolation problem, at
each xi a set {yi1, . . . , yid} of values is specified, and
the goal is a low-degree polynomial passing through
a point from each set. This problem has been pro-
posed as a cryptographic primitive, for example by
Naor and Pinkas [31], and studied by Bleichenbacher
and Nguyen [4].

We can use Theorem 1.2 to solve both problems,
and in particular recover the exact decoding rates of
Guruswami-Sudan. Our input is a collection of points

{(xi, yij) : 1 ≤ i ≤ n, 1 ≤ j ≤ d}.
We set p(z) =

∏
i(z − xi), and we define a monic

polynomial f(x) of degree d in x by

f(x) =
n∑

i=1

d∏

j=1

(x− yij)
n∏

k=1
k 6=i

z − xk

xi − xk
.

We have constructed f(x) by interpolation so that
f(x) ≡ ∏

j(x− yij) (mod (z − xi)). Thus, f(yij) = 0
whenever z = xi.

To correct e errors, we seek a polynomial w(z) of
degree at most ` such that for at least n − e values
of i, we have w(xi) = yij for some j. In other words,
f(w(z)) must be divisible by at least n − e factors
z − xi; that is, deg gcd(f(w(z)), p(z)) ≥ n − e. By
Theorem 1.2, we can solve this problem in polynomial
time if ` < n(1 − e/n)2/d (here β = 1 − e/n). That
is equivalent to the Guruswami-Sudan bound e < n−√

n`d.

4.2 Running time

The Guruswami-Sudan algorithm consists of two
parts: constructing the polynomial Q(x), and find-
ing roots of Q(x) in Fq[z]. In this paper, we do not
address the second part, but we improve the running
time of the first part, which has been the bottleneck
in the algorithm.

Emulating the analysis from [19], when (βn)2 =
(1 + δ)`n, using the fastest row reduction algorithm
(see Section (2.2)), the running time for our algo-
rithm is O(n/(δω+1+o(1))). In the worst case the run-
ning time is O(n2ω+3+o(1)d) field operations. With
cubic-time matrix multiplication we achieve O(n9d),
and with fast matrix multiplication [12] we achieve
O(n7.752d).

The original Guruswami-Sudan approach [19]re-
quires roughly O(n3δ−6) field operations with d = 1,
or O(n15) in the worst case. (The second part of their
algorithm runs in time O(n12), although there have
been improvements since then [33].) The fastest pre-
vious algorithm proposed for this problem [37] appar-
ently runs in worst case time Õ(n8) when d = 1, al-
though its running time analysis is only heuristic (see
the footnote on page 13 of [37]). See [8] for more de-
tails.

5 Number fields

There are two major conceptual differences distin-
guishing the number field case from the integer case.

The first is that each element γ ∈ K has n abso-
lute values, corresponding to the n embeddings σi of
K into C: |γ|i = |σi(γ)|. We cannot focus on a single
absolute value, but must instead treat them all sym-
metrically. (Note that these absolute value functions
are not necessarily all distinct, because pairs of com-
plex conjugate embeddings lead to the same absolute
value.)

The norm of γ is the product N(γ) =
σ1(γ) . . . σn(γ). It is a natural measure of size for el-
ements of OK , but bounding the norm alone cannot
suffice in Theorem 1.3. (It will not even guarantee
that there are only finitely many solutions, since OK

typically has infinitely elements of norm 1.) Instead,
we must bound each absolute value individually.

The second difference is that ideals in OK are gen-
erally not principal (i.e., they do not have a single gen-

305

H. COHN, N. HENINGER

erator), and that means OK-lattices have a more com-
plicated algebraic structure than Z-lattices do. How-
ever, we can address this issue simultaneously with the
first one, by using a 19th century construction due to
Dedekind, called the canonical embedding. It uses all
n complex embeddings of K to embed the OK-lattice
as a Z-lattice in a Euclidean space of n times the rank
of the OK-lattice. We can then find a short vector
by applying the LLL lattice basis reduction algorithm
to the canonical embedding. This approach treats all
the absolute values symmetrically and reduces to the
more familiar case of Z-lattices. (One can go further,
and find not only a short vector but also a reduced
pseudo-basis for a lattice over a number field [13], but
a short vector suffices for our purposes.)

Once we have dealt with these technical obstacles,
the proof of Theorem 1.3 follows the outline in Section
3. See [8] for the details of the construction and the
full proof.

6 Function fields

As is often the case in number theory, we can prove
stronger results about function fields than number
fields: the exponential dependence on n2 from Theo-
rem 1.3 does not occur in Theorem 1.4, because lattice
basis reduction is a more powerful technique in func-
tion fields. However, to take advantage of this power
we must bring to bear results from algebraic geometry.
(See[8] for more details.)

The absolute values on the function field K of a
curve X correspond to points on X , and they measure
the order of vanishing of functions in K. If f ∈ K and
p is a point of X , then |f |p is small if f vanishes to
high order at p and large if fhasa highorderpole at p.

There is no direct analogue of the Archimedean ab-
solute values from the number field case. Instead, we
have more flexibility, and we can choose an arbitrary
finite, nonempty subset S of the points on X to play
the analogous role. This will be the set S from the
statement of Theorem 1.4. We will restrict our atten-
tion to the ring OS of functions whose poles are all
contained in S, and we will measure size in OS using
the absolute values coming from the points in S.

The first obstacle to proving Theorem 1.4 is identi-
fying the right sort of lattice to consider. For compar-
ison, in the number field case, we use the canonical
embedding to reduce from OK-lattices to Z-lattices,
because Z is a principal ideal domain and hence Z-

lattices are structurally simpler. In the function field
case, Fq[z]-lattices are the analogous structures, but
Fq[z] has infinitely many embeddings as a subring of
OS , while Z has only one embedding into OK . We
must identify an embedding of a special sort, namely
one that treats all the absolute values from points in
S evenhandedly.

One we have identified a suitable embedding of Fq[z]
into OS , we are faced with two more difficulties. The
first is that we must consider lattices with more gen-
eral non-Archimedean norms than those studied in the
literature, because we must take into account all the
absolute values from S, and the known algorithms for
basis reduction no longer apply. However, we can
prove the needed results in our more general frame-
work.

The final difficulty comes from attempting to con-
trol the zeros and poles of functions in K. In the
simplest function field, namely the rational function
field Fq(z), we can specify the (finitely many) zeros
and poles arbitrarily, subject to just one constraint,
that the total order of all the zeros must equal that
of the poles. For example, z2/(z − 1) has a zero of
order two at 0, a pole of order one at 1, and a pole of
order one at ∞ (because the function grows linearly
as z becomes large).

In more complicated function fields, there are addi-
tional subtle constraints on the zeros and poles, which
interfere with our ability to construct auxiliary func-
tions in the proof (specifically, the placeholder X that
measures the size of the desired solution of the equa-
tion). We circumvent this difficulty by using a tech-
nique based on the strong approximation theorem.
This allows us to control the behavior of a function
at all the points in S except one, if we are willing
to allowed uncontrolled behavior at that single point.
Furthermore, we can uniformly bound the bad behav-
ior at the uncontrolled point in terms of the genus
of the function field. This approach introduces error
terms into our bounds, but they are small enough that
they disappear entirely in the final result.

Once we have overcome these obstacles, the proof
of Theorem 1.4 is analogous to the previous results.
See [8] for the full proof, as well as more back-
ground about function fields and their application to
algebraic-geometric codes.

306

IDEAL FORMS OF COPPERSMITH’S THEOREM AND GURUSWAMI-SUDAN LIST DECODING

Acknowledgements

We are grateful to Amanda Beeson, Keith Conrad,
Abhinav Kumar, Victor Miller, Chris Peikert, Bjorn
Poonen, Nigel Smart, and Madhu Sudan for helpful
conversations, comments, and references. N.H. was
supported by an internship at Microsoft Research New
England and an NSF Graduate Research Fellowship.

References

[1] M. Ajtai. The shortest vector problem in L2 is
NP-hard for randomized reductions. In Proceed-
ings of the Thirtieth Annual ACM Symposium
on Theory of Computing (Dallas, Texas, United
States, May 24–26, 1998), pages 10–19. ACM,
New York, NY, 1998.

[2] M. Ajtai, R. Kumar, and D. Sivakumar. A sieve
algorithm for the shortest lattice vector prob-
lem. In Proceedings of the Thirty-Third Annual
ACM Symposium on Theory of Computing (Her-
sonissos, Greece, July 6–8, 2001), pages 601–610.
ACM, New York, NY, 2001.

[3] D. J. Bernstein. List decoding for binary Goppa
codes. Preprint, 2008, http://cr.yp.to/ codes/
goppalist-20081107.pdf.

[4] D. Bleichenbacher and P. Q. Nguyen. Noisy
polynomial interpolation and noisy Chinese re-
maindering. In Advances in Cryptology – EU-
ROCRYPT 2000, pages 53–69. Lecture Notes in
Computer Science 1807. Springer-Verlag, Berlin,
Heidelberg, 2000.

[5] J. Blömer and A. May. New partial key expo-
sure attacks on RSA. In Advances in Cryptology
– CRYPTO 2003, pages 27–43. Lecture Notes in
Computer Science 2729. Springer-Verlag, Berlin,
Heidelberg, 2003.

[6] D. Boneh. Finding smooth integers in short in-
tervals using CRT decoding. In Proceedings of
the Thirty-Second Annual ACM Symposium on
Theory of Computing (Portland, Oregon, United
States, May 21–23, 2000), pages 265–272. ACM,
New York, NY, 2000.

[7] D. Boneh, G. Durfee, and Y. Frankel. An
attack on RSA given a small fraction of the
private key bits. In Advances in Cryptology–
ASIACRYPT’98, pages 25–34. Lecture Notes in
Computer Science 1514. Springer-Verlag, Berlin,
Heidelberg, 1998.

[8] H. Cohn and N. Heninger. Ideal forms of Copper-
smith’s theorem and Guruswami-Sudan list de-
coding. Preprint, 2010, http://arxiv. org/ abs/
1008.1284.

[9] D. Coppersmith. Small solutions to polynomial
equations, and low exponent RSA vulnerabilities.
J. Cryptology 10: 233–260, 1997.

[10] D. Coppersmith. Finding small solutions to small
degree polynomials. In Cryptography and Lat-
tices, pages 20–31. Lecture Notes in Computer
Science 2146. Springer-Verlag, Berlin, Heidel-
berg, 2001.

[11] D. Coppersmith, N. Howgrave-Graham, and S.
V. Nagaraj. Divisors in residue classes, construc-
tively. Math. Comp. 77: 531–545, 2008.

[12] D. Coppersmith and S. Winograd. Matrix mul-
tiplication via arithmetic progressions. J. Symb.
Comput. 9: 251–280, 1990.

[13] C. Fieker and D. Stehlé. Short bases of lattices
over number fields. In Algorithmic Number The-
ory, pages 157–173. Lecture Notes in Computer
Science 6197. Springer-Verlag, Berlin, Heidel-
berg, 2010.

[14] J. von zur Gathen. Hensel and Newton methods
in valuation rings. Math. Comp. 42: 637–661,
1984.

[15] J. von zur Gathen and J. Gerhard. Modern Com-
puter Algebra. Second edition. Cambridge Uni-
versity Press, Cambridge, England, 2003.

[16] J. von zur Gathen and E. Kaltofen. Factoriza-
tion of multivariate polynomials over finite fields.
Math. Comp. 45: 251–261, 1985.

[17] P. Giorgi, C.-P. Jeannerod, and G. Villard. On
the complexity of polynomial matrix computa-
tions. In Proceedings of the 2003 International
Symposium on Symbolic and Algebraic Computa-
tion (Philadelphia, Pennsylvania, United States,
August 3–6, 2003), pages 135–142. ACM, New
York, NY, 2003.

[18] V. Guruswami, A. Sahai, and M. Sudan. “Soft-
decision” decoding of Chinese remainder codes.
In Proceedings of the 41st Annual Symposium
on Foundations of Computer Science (Redondo
Beach, California, United States, November 12–
14, 2000), pages 159–168. IEEE Computer Soci-
ety, Los Alamitos, CA, 2000.

[19] V. Guruswami and M. Sudan. Improved de-
coding of Reed-Solomon and algebraic-geometry
codes. IEEE Trans. Inform. Theory 45: 1757–
1767, 1999.

307

H. COHN, N. HENINGER

[20] N. Howgrave-Graham. Approximate integer com-
mon divisors. In Cryptography and Lattices,
pages 51–66. Lecture Notes in Computer Science
2146. Springer-Verlag, Berlin, Heidelberg, 2001.

[21] M.-D. Huang and D. Ierardi. Efficient algorithms
for the Riemann-Roch problem and for addition
in the Jacobian of a curve. J. Symb. Comput. 18:
519–539, 1994.

[22] T. Kailath. Linear Systems. Prentice-Hall, Inc.,
Upper Saddle River, NJ, 1980.

[23] S. V. Konyagin and T. Steger. On polynomial
congruences. Math. Notes 55: 596–600, 1994.

[24] A. K. Lenstra. Factoring multivariate polynomi-
als over algebraic number fields. SIAM J. Com-
put. 16: 591–598, 1987.

[25] A. K. Lenstra, H. W. Lenstra, and L. Lovász.
Factoring polynomials with rational coeficients.
Math. Ann. 261: 515–534, 1982.

[26] V. Lyubashevsky, C. Peikert, and O. Regev. On
ideal lattices and learning with errors over rings.
In Advances in Cryptology – EUROCRYPT 2010,
pages 1–23. Lecture Notes in Computer Science
6110. Springer-Verlag, Berlin, Heidelberg, 2010.

[27] K. Manders and L. Adleman. NP-complete de-
cision problems for quadratic polynomials. In
Proceedings of the Eighth Annual ACM Sympo-
sium on Theory of Computing (Hershey, Penn-
sylvania, United States, May 3–5, 1976), pages
23–29. ACM, New York, NY, 1976.

[28] R. C. Mason. Diophantine Equations over Func-
tions Fields. London Mathematical Society Lec-
ture Note Series 96. Cambridge University Press,
Cambridge, England, 1984.

[29] A. May. New RSA vulnerabilities using lattice
reduction methods. Ph.D. thesis, University of
Paderborn, 2003.

[30] A. May. Using LLL-reduction for solving RSA
and factorization problems. In P. Q. Nguyen
and B. Vallée, editors, The LLL Algorithm, pages
315–348. Springer-Verlag, Berlin, Heidelberg,
2010.

[31] M. Naor and B. Pinkas. Oblivious transfer and
polynomial evaluation. In Proceedings of the
Thirty-First Annual ACM Symposium on Theory
of Computing (Atlanta, Georgia, United States,
May 1–4, 1999), pages 245–254. ACM, New York,
NY, 1999.

[32] C. Peikert and A. Rosen. Lattices that admit
logarithmic worst-case to average-case connection
factors. In Proceedings of the Thirty-Ninth An-
nual ACM Symposium on Theory of Computing
(San Diego, California, United States, June 11–
13, 2007), pages 478–487. ACM, New York, NY,
2007.

[33] R. M. Roth and G. Ruckenstein. Efficient decod-
ing of Reed-Solomon codes beyond half the mini-
mum distance. IEEE Trans. Inform. Theory 46:
246–257, 2000.

[34] M. A. Shokrollahi and H. Wasserman. List de-
coding of algebraic-geometric codes. IEEE Trans.
Inform. Theory 45: 432–437, 1999.

[35] V. Shoup. OAEP reconsidered. In Advances in
Cryptology–CRYPTO 2001, pages 239–259. Lec-
ture Notes in Computer Science 2139. Springer-
Verlag, Berlin, Heidelberg, 2001.

[36] M. Sudan. Ideal error-correcting codes: Unifying
algebraic and number-theoretic algorithms. In
Applied Algebra, Algebraic Algorithms and Error-
Correcting Codes, pages 36–45. Lecture Notes in
Computer Science 2227. Springer-Verlag, Berlin,
Heidelberg, 2001.

[37] P. Trifonov. Efficient interpolation in the
Guruswami-Sudan algorithm. Preprint, 2008,
http:// arxiv. org/ abs/0812.4937v3.

308

