The Query Complexity of Edit Distance

Krzysztof Onak MIT

Joint work with:

Alexandr Andoni (Princeton/CCI) Robert Krauthgamer (Weizmann Institute)

Krzysztof Onak - The Query Complexity of Edit Distance - p. 1/9

Edit Distance (or Levenshtein Distance)

ed(x, y) = number of deletions, insertions, and substitutions to transform x into y

algorithm algerithm algebrithm algebrath algebrah algebrah

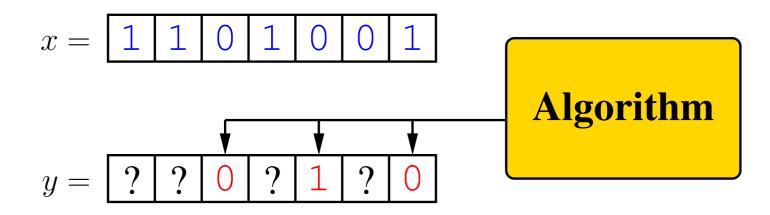
ed(algorithm, algebra) = 6

Krzysztof Onak – *The Query Complexity of Edit Distance* – p. 2/9

The Model

Input:

- two strings x and y of length n
- x is known to the algorithm
- y is not known, the algorithm can query it



Krzysztof Onak – The Query Complexity of Edit Distance – p. 3/9

The Model

Input:

- two strings x and y of length n
- x is known to the algorithm
- y is not known, the algorithm can query it
- Sample question: How many queries are necessary to tell ed(x, y) ≤ .2n from ed(x, y) ≥ .6n?

Krzysztof Onak - The Query Complexity of Edit Distance - p. 3/9

Lower Bound

• Telling edit distance $\le .2n$ from $\ge .6n$:

$$2^{\Omega\left(\frac{\log n}{\log \log n}\right)}$$
 queries

Lower Bound

• Telling edit distance $\leq .2n$ from $\geq .6n$:

$$2^{\Omega\left(\frac{\log n}{\log\log n}\right)}$$
 queries

• Telling edit distance $O(n/\alpha)$ from $\Omega(n)$:

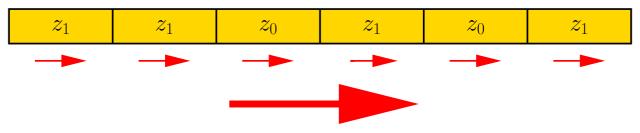
$$2^{\Omega\left(\frac{\log n}{\log \alpha + \log \log n}\right)}$$
 queries

- lcs(x, y) = longest common subsequence length
- Ulam distance defined for strings with no element appearing twice
- $\text{Ulam}(x, y) = |x| + |y| 2 \cdot \text{lcs}(x, y)$

- lcs(x, y) = longest common subsequence length
- Ulam distance defined for strings with no element appearing twice
- $Ulam(x, y) = |x| + |y| 2 \cdot lcs(x, y)$
- Exact algorithms:
 - Ulam distance: $O(n \log n)$ via patience sorting
 - Edit distance: $O((n/\log n)^2)$ for binary alphabet [Masek, Paterson 1980]

- lcs(x, y) = longest common subsequence length
- Ulam distance defined for strings with no element appearing twice
- $\text{Ulam}(x, y) = |x| + |y| 2 \cdot \text{lcs}(x, y)$
- Exact algorithms:
 - Ulam distance: $O(n \log n)$ via patience sorting
 - Edit distance: $O((n/\log n)^2)$ for binary alphabet [Masek, Paterson 1980]
- Number of queries to tell distance $\le .2n$ from $\ge .6n$
 - Ulam distance: $O(\log n)$ [Ailon, Chazelle, Comandur, Liu]

• Edit distance:
$$2^{\Omega(\frac{\log n}{\log \log n})}$$


- lcs(x, y) = longest common subsequence length
- Ulam distance defined for strings with no element appearing twice
- $\text{Ulam}(x, y) = |x| + |y| 2 \cdot \text{lcs}(x, y)$
- Exact algorithms:
 - Ulam distance: $O(n \log n)$ via patience sorting
 - Edit distance: $O((n/\log n)^2)$ for binary alphabet [Masek, Paterson 1980]
- Number of queries to tell distance $\le .2n$ from $\ge .6n$
 - Ulam distance: $O(\log n)$ [Ailon, Chazelle, Comandur, Liu]
 - Edit distance: $2^{\Omega(\frac{\log n}{\log \log n})}$
- First separation between the two

- Need $\Omega(\log n)$ queries to tell apart:
 - 1. Close:
 - x = random string
 - y = x shifted by random offset in [0,n/100]

- Need $\Omega(\log n)$ queries to tell apart:
 - 1. Close:
 - $x = random \ string$
 - y = x shifted by random offset in [0,n/100]
 - 2. Far:
 - x = random string
 - y = random string

- Need $\Omega(\log n)$ queries to tell apart:
 - 1. Close:
 - $x = random \ string$
 - y = x shifted by random offset in [0,n/100]
 - 2. Far:
 - x = random string
 - y = random string
- $O(\log n)$ queries sufficient, need better construction

- Need $\Omega(\log n)$ queries to tell apart:
 - 1. Close:
 - x = random string
 - y = x shifted by random offset in [0,n/100]
 - 2. Far:
 - x = random string
 - y = random string
- $O(\log n)$ queries sufficient, need better construction
- Solution: Recursion
 - Fix random z_0 and z_1
 - Replace every 0 with z_0 and every 1 with z_1 , always shift at random by a little bit

Krzysztof Onak – The Query Complexity of Edit Distance – p. 6/9

- Need $\Omega(\log n)$ queries to tell apart:
 - 1. Close:
 - x = random string
 - y = x shifted by random offset in [0,n/100]
 - 2. Far:
 - x = random string
 - y = random string
- $O(\log n)$ queries sufficient, need better construction
- Solution: Recursion
 - Fix random z_0 and z_1
 - Replace every 0 with z_0 and every 1 with z_1 , always shift at random by a little bit
 - Will need $\Omega(\log^2 n)$ queries

Upper Bounds

We also have some upper bounds

Upper Bounds

- We also have some upper bounds
- **Example:** telling edit distance $O(n/2^{\sqrt{\log n}})$ from $\Omega(n)$
 - our algorithm makes $2^{O(\sqrt{\log n})}$ queries
 - lower bound $2^{\Omega(\sqrt{\log n})}$

Upper Bounds

- We also have some upper bounds
- **Example:** telling edit distance $O(n/2^{\sqrt{\log n}})$ from $\Omega(n)$
 - our algorithm makes $2^{O(\sqrt{\log n})}$ queries
 - lower bound $2^{\Omega(\sqrt{\log n})}$

Stay tuned!!!

Krzysztof Onak – The Query Complexity of Edit Distance – p. 7/9

What if neither of the strings known?

What if neither of the strings known?

Batu, Ergün, Kilian, Magen, Raskhodnikova, Rubinfeld, Sami 2003:

can tell edit distance $O(n^{\alpha})$ from $\Omega(n)$ with $\tilde{O}(n^{\alpha/2} + n^{2\alpha-1})$ queries

What if neither of the strings known?

Batu, Ergün, Kilian, Magen, Raskhodnikova, Rubinfeld, Sami 2003:

can tell edit distance $O(n^{\alpha})$ from $\Omega(n)$ with $\tilde{O}(n^{\alpha/2} + n^{2\alpha-1})$ queries

Andoni, O. 2009:

can tell edit distance $O(n^{\alpha})$ from $\Omega(n^{\beta})$ with $O(n^{\alpha+2(1-\beta)+o(1)})$ queries

What if neither of the strings known?

Batu, Ergün, Kilian, Magen, Raskhodnikova, Rubinfeld, Sami 2003:

can tell edit distance $O(n^{\alpha})$ from $\Omega(n)$ with $\tilde{O}(n^{\alpha/2} + n^{2\alpha-1})$ queries

• Andoni, O. 2009:

can tell edit distance $O(n^{\alpha})$ from $\Omega(n^{\beta})$ with $O(n^{\alpha+2(1-\beta)+o(1)})$ queries

Andoni, Nguyen 2010:

near optimal sublinear-time algorithm for Ulam distance

What if neither of the strings known?

Batu, Ergün, Kilian, Magen, Raskhodnikova, Rubinfeld, Sami 2003:

can tell edit distance $O(n^{\alpha})$ from $\Omega(n)$ with $\tilde{O}(n^{\alpha/2}+n^{2\alpha-1})$ queries

• Andoni, O. 2009:

can tell edit distance $O(n^{\alpha})$ from $\Omega(n^{\beta})$ with $O(n^{\alpha+2(1-\beta)+o(1)})$ queries

Andoni, Nguyen 2010:

near optimal sublinear-time algorithm for Ulam distance

Exact query complexity of edit distance still open

Krzysztof Onak – *The Query Complexity of Edit Distance* – p. 8/9

Thank you!

Krzysztof Onak – The Query Complexity of Edit Distance – p. 9/9