
2-query low-error

PCP Composition

Prahladh Harsha

TIFR, Mumbai

Joint work with

Irit Dinur

Label Cover

Label Cover (LC)
G – Bipartite graph
1, 2 – labels
(projection) constraint per edge

ce:1 2

Edge e is satisfied if ce(σ1)=σ2

Goal: Find an assignment to vertices that satisfies the most edges

Gap(α,β)-LC: Distinguish between instances

• At least α fraction of constraints satisfied

• At most β fraction of constraints satisfied

1 2

Label Cover

Label Cover (LC)
G – Bipartite graph
1, 2 – labels
(projection) constraint per edge

ce:1 2

Edge e is satisfied if ce(σ1)=σ2

PCP Theorem [Arora Safra ’92,Arora Lund Motwani Sudan Szegedy ’92]:

Gap(1,0.99999)-LC is NP-hard

Repetition Theorem [Raz ’95]:

For every constant δ there exists alphabets 1,2, Gap(1,δ)-LC is NP-hard

Consequence [Hastad ’97]: MAX3SAT is hard to approximate within

(7/8 + ε) for every constant ε

1 2

Label Cover

Label Cover (LC)
G – Bipartite graph
1, 2 – labels
(projection) constraint per edge

ce:1 2

Edge e is satisfied if ce(σ1)=σ2

PCP Theorem [Arora Safra ’92,Arora Lund Motwani Sudan Szegedy ’92]:

Gap(1,0.99999)-LC is NP-hard

Repetition Theorem [Raz ’95]:

For every constant δ there exists alphabets 1,2, Gap(1,δ)-LC is NP-hard

Consequence [Hastad ’97]: MAX3SAT is hard to approximate within

(7/8 + ε) for every constant ε

1 2

Label Cover

Label Cover (LC)
G – Bipartite graph
1, 2 – labels
(projection) constraint per edge

ce:1 2

Edge e is satisfied if ce(σ1)=σ2

Sub-constant error [Raz Safra ’97, Arora Sudan ’97]:

For every alphabet  and error δ=1/log||, Gap(1,δ)-LC is NP-hard,
provided ||> npolylog n

1 2

Caveat: Large Alphabet Size
Renders result “useless” for hardness results

Label Cover

Label Cover (LC)
G – Bipartite graph
1, 2 – labels
(projection) constraint per edge

ce:1 2

Edge e is satisfied if ce(σ1)=σ2

Sub-constant error [Moshkovitz Raz ’08]:

For every alphabet  and error δ=1/log||, Gap(1,δ)-LC is NP-hard

1 2

Label Cover

Label Cover (LC)
G – Bipartite graph
1, 2 – labels
(projection) constraint per edge

ce:1 2

Edge e is satisfied if ce(σ1)=σ2

Sub-constant error [Moshkovitz Raz ’08]:

For every alphabet  and error δ=1/log||, Gap(1,δ)-LC is NP-hard

[even under nearly linear sized reductions]

1 2

Core of [MR’08]

 Alphabet Reduction:

 Label Cover instance with large alphabet size

 Label Cover instance with small alphabet size

 Difficulty:
 Reduction must not affect soundness error δ

 Target instance must be label cover instance

 Intricate and fairly involved construction

Alphabet Reduction [Dinur H. ’09]

 A new Alphabet Reduction Technique

(aka Composition Theorem)

 Large alphabet to small alphabet
 (without affecting soundness δ too much)

 Generic composition, works with any label
cover instance

 Gives simpler proof of [MR’08]

Probabilistically Checkable Proofs
(PCPs)

Probabilistically Checkable Proofs

 PCP Theorem: characterization of NP

Deterministic
Verifier

NP Proof y

Probabilistic
Verifier

PCP π

Probabilistically Checkable Proofs

 PCP Theorem: characterization of NP

Deterministic
Verifier

NP Proof y

Probabilistic
Verifier

PCP π

PCP π – locally testable encoding of the NP proof y

Probabilistically Checkable Proofs

 PCP Theorem: characterization of NP

Deterministic
Verifier

NP Proof y

Probabilistic
Verifier

PCP π

Completeness:

If  ∈ SAT, there is a PCP π such all local views are accepting

Soundness:
If   L, then for all PCPs π most local views are rejecting

PCPs to Label Cover?

Label Cover  PCPs

Label Cover  PCPs

Proof π

Verifier

Verifier
1. Selects a random “big” vertex u
2. Reads entire neighborhood of u
3. Accepts iff there is a value for u that would cause

all edge constraints to accept.

Label Cover  PCPs

Proof π

Verifier

YES instances – all views are “happy”

NO instances – average view is very “unhappy”, i.e.
view from a random window is at most δ-close to a

satisfying view.

Label Cover  PCPs

Proof π

Verifier

1) YES: ∃ π, Er [agreement(π(r))]=1

2) NO: ∀π, Er [agreement(π(r))] < δ

Agreement of given view
with an accepting view

• Robust soundness implies regular soundness
• But not vice versa

PCPs

 PCP Theorem: characterization of NP

Deterministic
Verifier

NP Proof y

Probabilistic
Verifier

PCP π

Completeness:

If  ∈ SAT, there is a PCP π such all local views are accepting

Soundness:
If   L, then for all PCPs π most local views are rejecting

Robust PCPs [BGHSV ’04]

 PCP Theorem: characterization of NP

Deterministic
Verifier

NP Proof y

Probabilistic
Verifier

PCP π

Completeness:

If  ∈ SAT, there is a PCP π such all local views are accepting

Robust Soundness:
If   L, then for all PCPs π most local views are far from accepting

Robust PCPs [BGHSV ’04]

 PCP Theorem: characterization of NP

Deterministic
Verifier

NP Proof y

Probabilistic
Verifier

PCP π

Completeness:

If  ∈ SAT, there is a PCP π such all local views are accepting

Robust Soundness:
If   L, then for all PCPs π most local views are far from accepting

robust soundness =E[agreement()] < δ

Label Cover  Robust PCPs

Proof π

Verifier

• This transformation is “invertible”

• |S1| corresponds to the number of accepting
configurations, which is bounded by exp(window size)
= exp(# queries)

Label Cover  Robust PCPs

 Equivalence

 PCP for SAT with robust soundness δ

 There is a reduction from SAT to Gap(1,δ)-LC

 In this equivalence,

 alphabet size of Label Cover = #queries of PCP

Goal Restated

 Label Cover:

 Reduce alphabet size

 Robust PCP:

 Reduce #queries

Reducing # queries

Probabilistic
Verifier

PCP π

Φ, r ACC/REJ

Verifier’s Actions

1.Read inputs Φ, r

1.Compute local window I
and local predicate f

1.Read local view

1.Accept if local view satisfies
local predicate

I

Idea: Compose!!
[ala composition of AS’92]

Use “Inner” PCP Verifier to
check if local window
satisfies local predicate

Consistency Issue: Inner verifier not only needs to check local
predicate is satisfiable (easy), but also that is satisfiable by local
window

Resolve Consistency using PCPs that can decode!!

Decodable PCPs

NP Proof y PCP π

Φ, r ACC/REJ

Decodable PCPs

NP Proof y PCP π

Φ, r ACC/REJ

j

j

REJ or yj

Decodable PCP (dPCP) – encoding of NP proof
• locally testable
• locally decodable

Decodable PCPs

NP Proof y PCP π

Φ, r ACC/REJ

j

j

REJ or yj

Completeness:
For every NP proof y, there is a dPCP π such that

Pr[Verifier decodes correctly] = 1

Soundness:
For every dPCP π, there is at most a NP proof y

Pr[Verifier’s output inconsistent with y] < δ

Decodable PCPs

NP Proof y PCP π

Φ, r ACC/REJ

j

j

REJ or yj

Completeness:
For every NP proof y, there is a dPCP π=π(y) such that
Probi,r[f(πI)=yi] =1

Soundness:
For every dPCP π, there is at most a NP proof y

Pr[Verifier’s output inconsistent with y] < δ

Decodable PCPs

NP Proof y PCP π

Φ, r ACC/REJ

j

j

REJ or yj

Completeness:
For every NP proof y, there is a dPCP π=π(y) such
that Probi,r[f(πI)=yi] =1

Soundness:
For every dPCP π, there is at most a NP proof y

Probi,r[f(πI) {(y)i}∪{reject}] < δ

Decodable PCPs

NP Proof y PCP π

Φ, r ACC/REJ

j

j

REJ or yj

Completeness:
For every NP proof y, there is a dPCP π=π(y) such
that Probi,r[f(πI)=yi] =1

Soundness:
For every dPCP π, there is a short list of NP proofs
y1,..,yL, Probi,r[f(πI) {(yj)i}∪{reject}] < δ

Composition with dPCPs

 Composition:

1. The verifier first computes local window I and local predicate

2. Instead of checking local window satisfies local predicate,
invoke a decoding verifier to do this.

3. In addition, select random i∈I and ask decoding verifier to
output this symbol. Check consistency vs. πi.

 Query Complexity

outer query complexity  inner query complexity + 1

π
Composed

Verifier

Composition with dPCPs

 Question: Does this composition preserve robustness?

 Why do we care?

 If composed verifier is robust, by equivalence with Label
Cover, we get a Label cover instance with small alphabet

 Alas, it is not robust! ...

 Composed view consists of two parts – (view in outer
and inner verifiers), each part can be completed to an
accepting view. (robust soundness > ½)

 Easy to fix:

Instead of decoding from inner proof and comparing to
outer proof symbol, compare inner proofs to each other!

NEW: Robust Composition

I1

π

p(I1) p(I2)

Composed verifier:

1) select a random symbol i, consider all windows containing it.
2) Choose d such windows I1,…Id

3) Run the inner verifier on each π(Ij). Ask each to decode πi

4) Accept iff all inner verifiers accept, and all answers are equal

I2I3

p(I)

Robust Composition

DPCP for 1 DPCP for 2 DPCP for 3

Composed verifier:

1) select a random symbol i, consider all windows containing it.
2) Choose d such pairs (I1,f1)…(Id,fd)
3) Run the inner verifier on each π (Ij,fj). Ask each to decode πi

4) Accept iff all inner verifiers accept, and all answers are equal

replace the consistency query

with decoding many local views simultaneously.

Outer query complexity  d * (inner query complexity)

Preserves robust soundness !!

π

Robust Composition

 By equivalence with label-cover

we get a label cover with smaller alphabet size.

 Perform repeatedly to obtain [MR’08] result

 For every alphabet  and error δ=1/log||,
Gap(1,δ)-LC is NP-hard.

Open Question

 Error – Alphabet Relation

 Parallel Repetition obtains δ=1/poly||

 while

 [MR’08] and new composition only yield

δ=1/log||

 Sliding Scale Conjecture

 For every alphabet  and error δ=1/poly||,
Gap(1,δ)-LC is NP-hard.

THANK YOU

