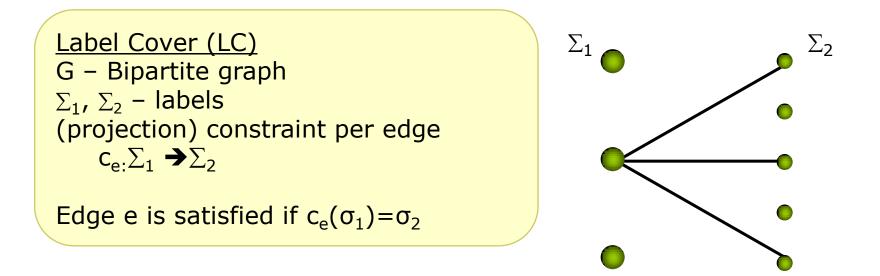
2-query low-error PCP Composition

Prahladh Harsha TIFR, Mumbai

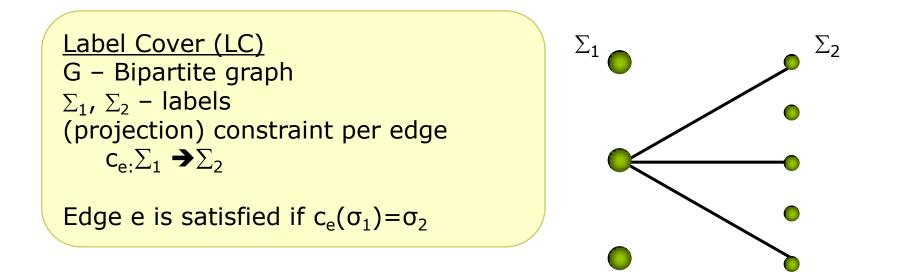
Joint work with Irit Dinur



Goal: Find an assignment to vertices that satisfies the most edges

 $Gap(\alpha,\beta)$ -LC: Distinguish between instances

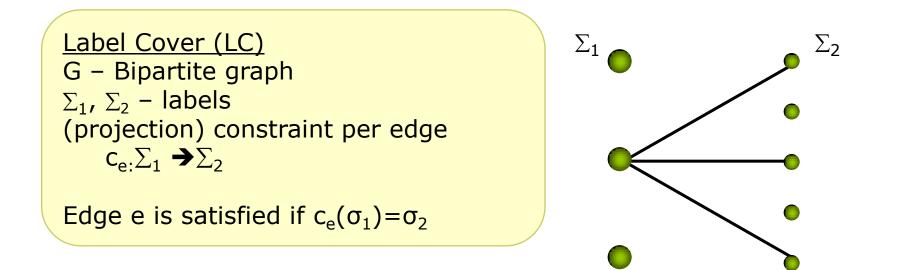
- At least a fraction of constraints satisfied
- At most β fraction of constraints satisfied



PCP Theorem [Arora Safra '92, Arora Lund Motwani Sudan Szegedy '92]: Gap(1,0.99999)-LC is NP-hard

Repetition Theorem [Raz '95]:

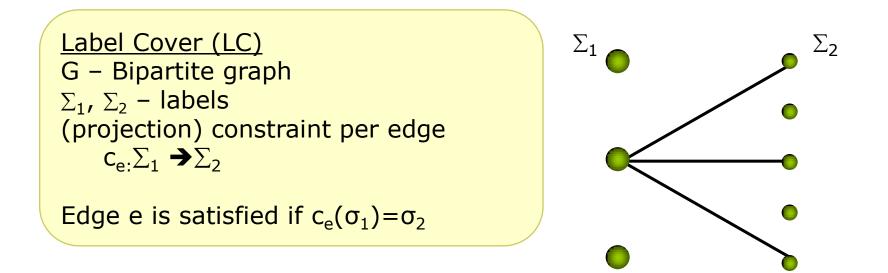
For every constant δ there exists alphabets Σ_1, Σ_2 , Gap(1, δ)-LC is NP-hard Consequence [Hastad '97]: MAX3SAT is hard to approximate within (7/8 + ϵ) for every constant ϵ



PCP Theorem [Arora Safra '92, Arora Lund Motwani Sudan Szegedy '92]: Gap(1,0.99999)-LC is NP-hard

Repetition Theorem [Raz '95]:

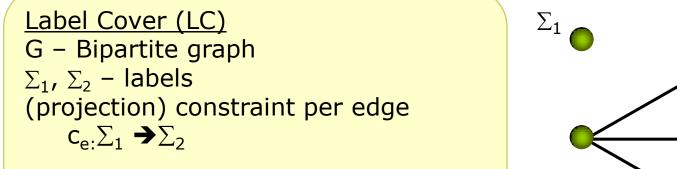
For every constant δ there exists alphabets Σ_1, Σ_2 , Gap(1, δ)-LC is NP-hard Consequence [Hastad '97]: MAX3SAT is hard to approximate within (7/8 + ϵ) for every constant ϵ



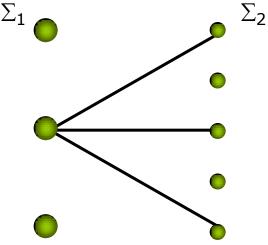
Sub-constant error [Raz Safra '97, Arora Sudan '97]:

For every alphabet Σ and error $\delta = 1/\log|\Sigma|$, Gap(1, δ)-LC is NP-hard, provided $|\Sigma| > n^{\text{polylog } n}$

Caveat: Large Alphabet Size Renders result "useless" for hardness results



Edge e is satisfied if $c_e(\sigma_1) = \sigma_2$

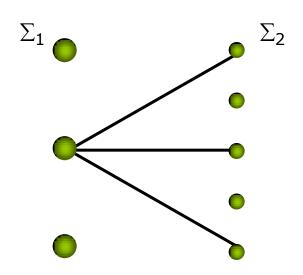


Sub-constant error [Moshkovitz Raz '08]:

For every alphabet Σ and error $\delta = 1/\log|\Sigma|$, Gap(1, δ)-LC is NP-hard

Label Cover (LC) G – Bipartite graph Σ_1, Σ_2 – labels (projection) constraint per edge $c_{e:}\Sigma_1 \rightarrow \Sigma_2$

Edge e is satisfied if $c_e(\sigma_1) = \sigma_2$



Sub-constant error [Moshkovitz Raz '08]:

For every alphabet Σ and error $\delta = 1/\log|\Sigma|$, Gap(1, δ)-LC is NP-hard

[even under nearly linear sized reductions]

Core of [MR'08]

- Alphabet Reduction:
 - Label Cover instance with large alphabet size
 - Label Cover instance with small alphabet size
 - Difficulty:
 - $\hfill\square$ Reduction must not affect soundness error δ
 - Target instance must be label cover instance
 - Intricate and fairly involved construction

Alphabet Reduction [Dinur H. '09]

A new Alphabet Reduction Technique (aka Composition Theorem)

Large alphabet to small alphabet □ (without affecting soundness δ too much)

- Generic composition, works with any label cover instance
- Gives simpler proof of [MR'08]

Probabilistically Checkable Proofs (PCPs)

Probabilistically Checkable Proofs

PCP Theorem: characterization of NP ΡCΡ π NP Proof y Probabilistic Deterministic

Verifier

Verifier

Probabilistically Checkable Proofs

PCP Theorem: characterization of NP NP Proof y PCP π Deterministic Verifier

PCP π – locally testable encoding of the NP proof y

Probabilistically Checkable Proofs

PCP Theorem: characterization of NP PCP π

Deterministic Verifier

Completeness:

Probabilistic

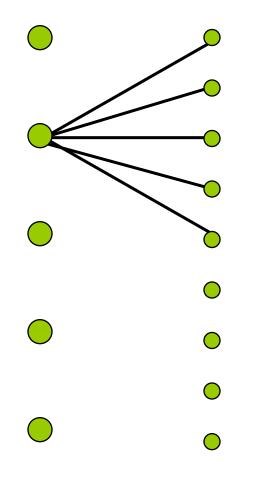
Verifier

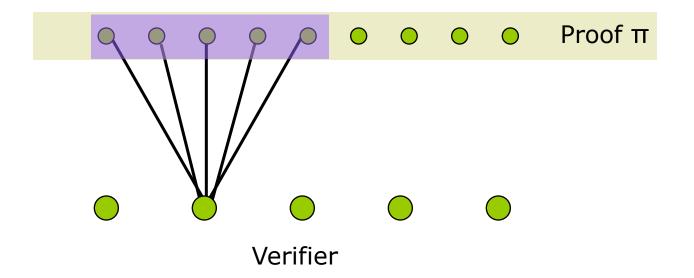
If $\phi \in SAT$, there is a PCP π such all local views are accepting

Soundness:

If $\phi \notin L$, then for all PCPs $\pi \text{ most}$ local views are rejecting

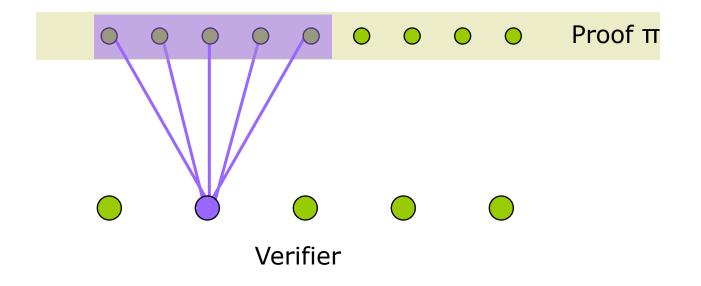
PCPs to Label Cover?





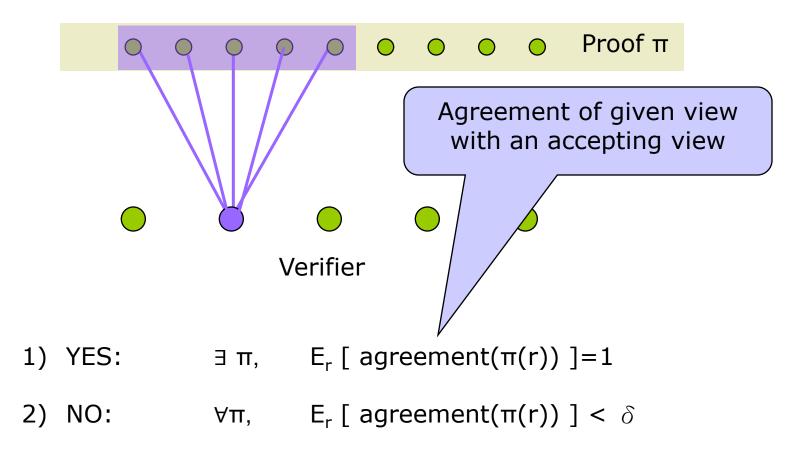
<u>Verifier</u>

- 1. Selects a random "big" vertex **u**
- 2. Reads entire neighborhood of **u**
- 3. Accepts iff there is a value for **u** that would cause all edge constraints to accept.



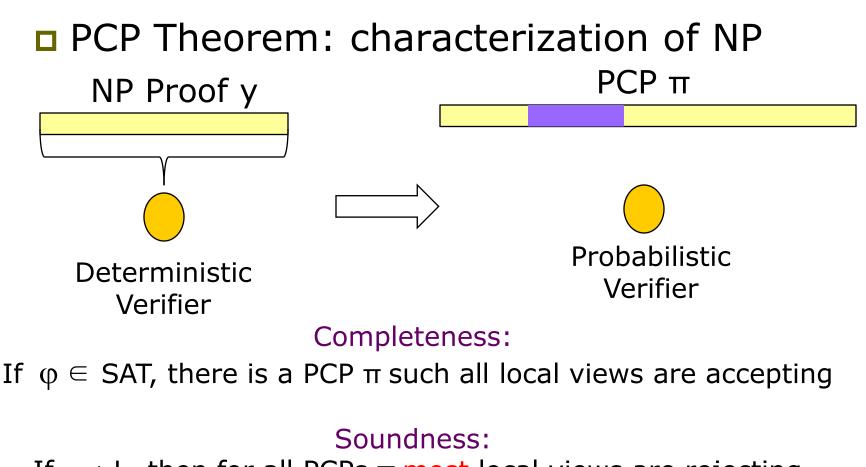
YES instances – all views are "happy"

NO instances – average view is very "unhappy", i.e. view from a random window is at most δ -close to a satisfying view.



- Robust soundness implies regular soundness
- But not vice versa

PCPs



If $\phi \notin L$, then for all PCPs π most local views are rejecting

Robust PCPs [BGHSV '04]

PCP Theorem: characterization of NP NP Proof y

Deterministic Verifier Probabilistic Verifier

Completeness:

If $\phi \in$ SAT, there is a PCP π such all local views are accepting

Robust Soundness: If $\phi \notin L$, then for all PCPs π most local views are far from accepting

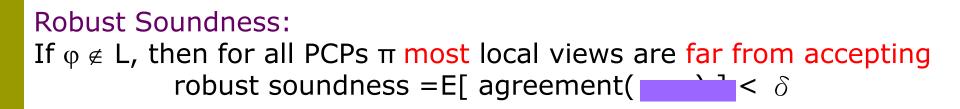
Robust PCPs [BGHSV '04]

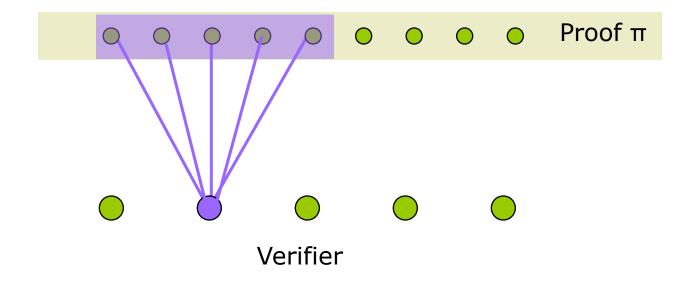
PCP Theorem: characterization of NP NP Proof y

Deterministic Verifier Probabilistic Verifier

Completeness:

If $\,\phi\in\,$ SAT, there is a PCP $\pi\,$ such all local views are accepting





- This transformation is "invertible"
- |Σ₁| corresponds to the number of accepting configurations, which is bounded by exp(window size)
 = exp(# queries)

Equivalence

PCP for SAT with robust soundness δ

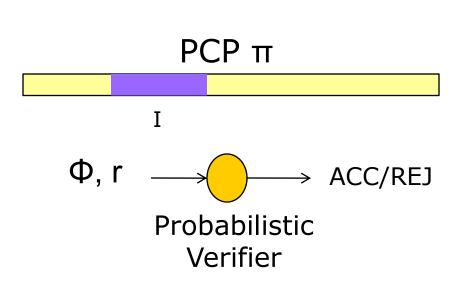
• There is a reduction from SAT to Gap(1, δ)-LC

In this equivalence, alphabet size of Label Cover = #queries of PCP

Goal Restated

- Label Cover:
 - Reduce alphabet size
- Robust PCP:
 - Reduce #queries

Reducing # queries



Verifier's Actions

1.Read inputs Φ, r

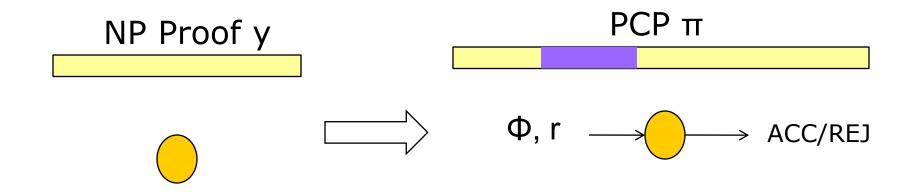
1.Compute local window I and local predicate f

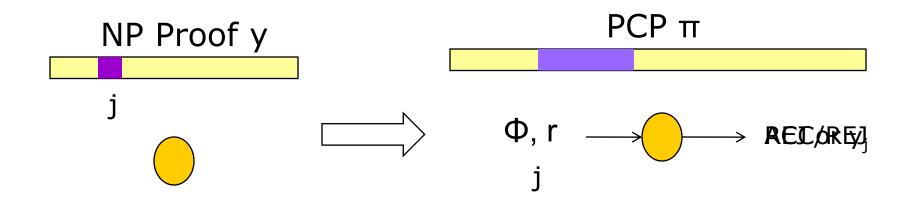
Idea: Compose!! [ala composition of AS'92]

Use "Inner" PCP Verifier to check if local window satisfies local predicate

Consistency Issue: Inner verifier not only needs to check local predicate is satisfiable (easy), but also that is satisfiable by local window

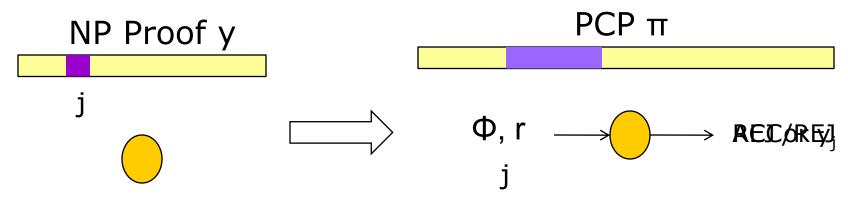
Resolve Consistency using PCPs that can decode!!





Decodable PCP (dPCP) – encoding of NP proof

- locally testable
- locally decodable

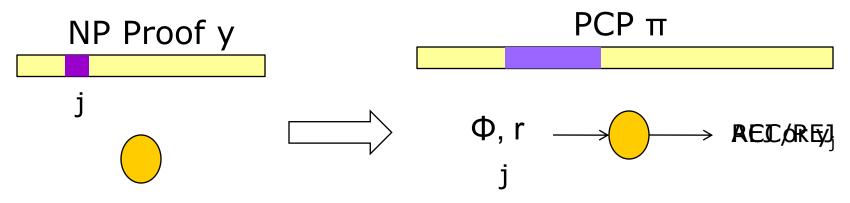


Completeness:

For every NP proof y, there is a dPCP π such that Pr[Verifier decodes correctly] = 1

Soundness:

For every dPCP π , there is at most a NP proof y Pr[Verifier's output inconsistent with y] < δ

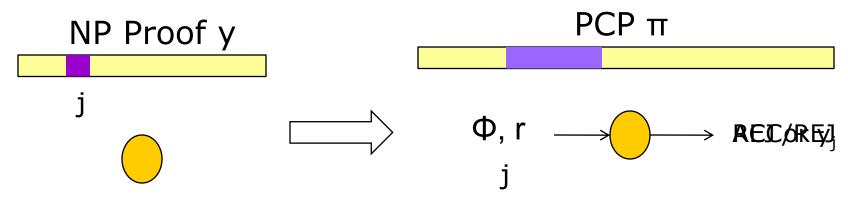


Completeness:

For every NP proof y, there is a dPCP $\pi=\pi(y)$ such that Prob_{i,r}[f(π_I)=y_i] =1

Soundness:

For every dPCP π , there is at most a NP proof y Pr[Verifier's output inconsistent with y] < δ

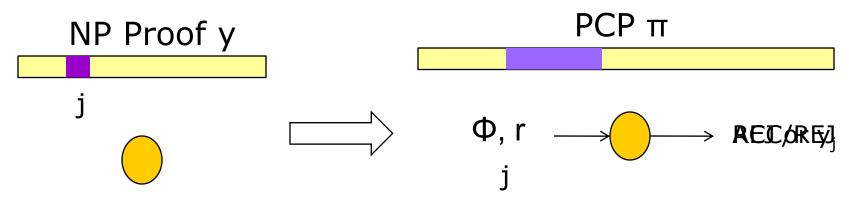


Completeness:

For every NP proof y, there is a dPCP $\pi=\pi(y)$ such that Prob_{i,r}[f(π_I)=y_i] =1

Soundness:

For every dPCP π , there is at most a NP proof y $Prob_{i,r}[f(\pi_I) \notin \{(y)_i\} \cup \{reject\}] < \delta$



Completeness:

For every NP proof y, there is a dPCP $\pi=\pi(y)$ such that Prob_{i,r}[f(π_I)=y_i] =1

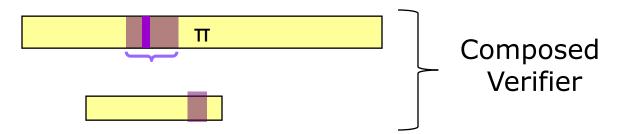
Soundness:

For every dPCP π , there is a short list of NP proofs $y^1, ..., y^L$, $\text{Prob}_{i,r}[f(\pi_I) \notin \{(y^j)_i\} \cup \{\text{reject}\}] < \delta$

Composition with dPCPs

Composition:

- 1. The verifier first computes local window I and local predicate
- 2. Instead of checking local window satisfies local predicate, invoke a *decoding* verifier to do this.
- 3. In addition, select random $i \in I$ and ask decoding verifier to output this symbol. Check consistency vs. π_i .



■ Query Complexity
outer query complexity → inner query complexity + 1

Composition with dPCPs

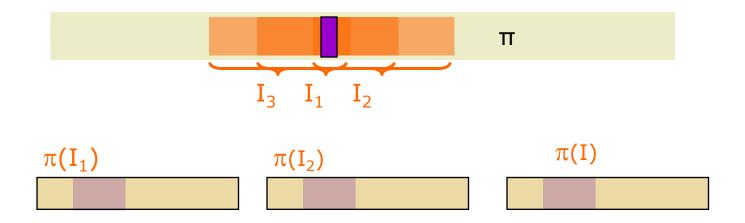
Question: Does this composition preserve robustness?

- Why do we care?
- If composed verifier is robust, by equivalence with Label Cover, we get a Label cover instance with small alphabet
- Alas, it is not robust! ...
 - Composed view consists of two parts (view in outer and inner verifiers), each part can be completed to an accepting view. (robust soundness > 1/2)

Easy to fix:

Instead of decoding from inner proof and comparing to outer proof symbol, compare inner proofs *to each other*!

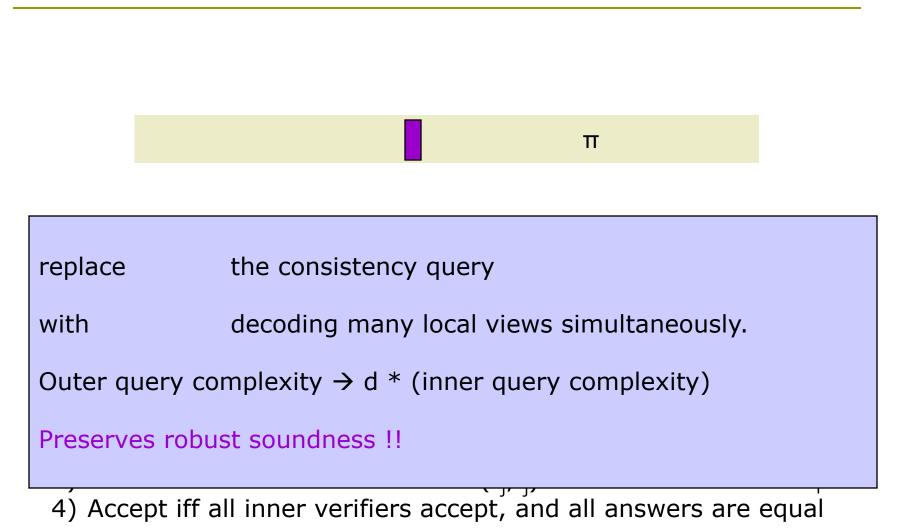
NEW: Robust Composition



Composed verifier:

- 1) select a random symbol i, consider all windows containing it.
- 2) Choose d such windows $I_1, ..., I_d$
- 3) Run the inner verifier on each $\pi(I_i)$. Ask each to decode π_i
- 4) Accept iff all inner verifiers accept, and all answers are equal

Robust Composition



Robust Composition

- By equivalence with label-cover we get a label cover with smaller alphabet size.
- Perform repeatedly to obtain [MR'08] result
 - For every alphabet Σ and error $\delta = 1/\log|\Sigma|$, Gap(1, δ)-LC is NP-hard.

Open Question

Error – Alphabet Relation

- Parallel Repetition obtains $\delta = 1/\text{poly}|\Sigma|$ □ while
- [MR'08] and new composition only yield $\delta = 1/\log |\Sigma|$

Sliding Scale Conjecture

For every alphabet Σ and error $\delta = 1/\text{poly}|\Sigma|$, Gap(1, δ)-LC is NP-hard.

THANK YOU