
Some recent results on local
testing of sparse linear codes

Swastik Kopparty (MIT)

Shubhangi Saraf (MIT)

Locally Testable Codes

• Let C ½ F2
N be a linear code.

• C is locally testable if there is a tester T

such that :

Given oracle access to r 2 F2
N

T queries r in few locations

• If r 2 C, then Accept

• If r is ²-far from C, then Reject

r

The Hadamard Code

X1 X2 X3 ….. X2
n

G =

n £ 2n

m¢X1 m¢X2 … … m¢X2
nE(m) =

E(m) is the truth table
of the linear function

m ¢ x

r1 r2 … … r2
nR =

The received word R is
some function on all on

F2
n

Linearity Testing of Boolean Functions

Given oracle access to
f : F2

n  F2

Test using few queries if f is linear.

• If f is linear, Accept
• If f is ²-far from all g that are linear, Reject

f

F2
n

Prx[f(x)  g(x)] > ²

BLR Linearity Test

• Choose x, y uniformly at random
• Query f(x), f(y) and f(x+y)

– Check if
• If Yes, then Accept.
• If No, then Reject

Theorem [BLR ’90]:
Hadamard Code is locally testable

– If f is linear, then test accepts with probability 1.
– If f is ² -far (under the uniform distribution) from being

linear, test rejects with probability > ²0 > 0

f(x) + f(y) = f(x+y)
?

LTCs and Linearity Testing

X1 X2 X3 ….. XN

X1 X2 X3 … XN

G =

m¢X1 m¢X2 … … m¢XN

F2
n

Received word
R is function
defined on S

G is a
generator
matrix for
the code C

Each codeword:
partial truth-

table of a linear
function

C is locally testable if (using queries to S)
Can distinguish between
1) R is a linear function on S
2) R is ²-far (on S) from all linear g

E(m) =

R =

Pr X 2 ¹ [f(x)  g(x)] > ²

S Let ¹ denote the
uniform distribution
on S

Talk Overview

• Locally testable codes Testing linearity under
some distribution ¹

• Criterion for testing under ¹

• Local List Decoding and Testing with high error

• Time Complexity
– Dual BCH codes
– connections to the noisy parity problem

Testing Linearity under General
Distributions

• Given

– a distribution ¹ over F2
n

• ¹ distance (g,h) = Prx2 ¹ [g(x)  h(x)]

– Oracle access to f : F2
n  F2

f 

A 3 query
test actually
works for all
distributions!

[HK07]

F2
n

A Goal: If f is linear, Accept
If f is ²-far from all linear functions in ¹ distance, Reject

An odd consequence

¹
f linear

f random

Goal: If f is linear, Accept
If f is ²-far from all linear functions in ¹ distance, Reject

The moral

The tester should make queries
essentially according to ¹

¹
f linear

f random

Stronger Goal

¹
f linear

f random

Stronger Goal: With high probability, accept
functions that are close to linear
“Tolerant property testing” [PRR]

Tolerant Linearity Testing

• Given
– a distribution ¹ over F2

n

– Oracle access to f : F2
n  F2

• If f is close to linear in ¹ -distance, then Accept
with high probability

• If f is far from linear in ¹ -distance, then
Reject with noticeable probability

The BLR Linearity Tester is a Tolerant Tester for Un

Connection to Locally Testable Codes

• For every linear code C, there is a distribution

¹ such that

– C is locally testable linearity is tolerantly

testable under ¹.

• Tolerance crucial

Uniform distribution on
the columns of the

generator matrix for C

Talk Overview

• Locally testable codes Testing linearity under
some distribution ¹

• Criterion for tolerant testing under ¹

• Local List Decoding and Testing with high error

• Time Complexity
– Dual BCH codes
– connections to the noisy parity problem

Need for correlation

• Say the test queries x1, …, xk

• Each query xi 2 F2
n essentially

according to ¹

• xi’s should satisfy some linear relation

• A bare minimum for testing:
– The existence of such a correlated distribution.

¹

Uniform Correlatability

• Definition: ¹ is k-uniformly correlatable if

there exists a joint distribution

1. Each Xi is distributed as ¹
2. X =  Xi is distributed uniformly

Let ¹(k) denote this joint distribution

X1 X2 … Xk  Xi = X

Theorem

If ¹ is k-uniformly correlatable, then
linearity is tolerantly testable under ¹ in

O(k) queries

Holds for tolerantly testing homomorphisms
between any two abelian groups (under general

distributions).

Tolerantly testable distributions

• Corollary: Linearity is tolerantly testable with
a constant number of queries under:

1. Product distributions

2. Symmetric distributions supported on words of
weight 2 [° n, (1-°) n]

3. Low Fourier-bias distributions
• e.g. uniform distribution over a large random subset

– “Sparse random linear codes are locally testable”
[KS07]

– Generalizes [KS07] to arbitrary groups

Theorem:

If C µ {0,1}N is a linear code which is

1. Sparse: |C| · Nc

2. “unbiased”: Each nonzero codeword has
weight 2 (1/2- N-°, ½+ N-°)

Then C is locally testable with constantly
many queries.

Proof that Uniform Correlatability
testability

Recall:
Given distribution ¹ that is k-uniformly correlatable.
There exists
Such that

1. Each Xi is distributed as ¹
2. X =  Xi is distributed uniformly over F2

n

• Let ¹(k) denote the joint distribution (X1, …, Xk)

• Let ¹(k) |  Xi = X denote the joint distribution of

(X1, …, Xk) conditioned on  X
i
= X

• Let Un denote the uniform distribution on F2
n

X1 X2 … Xk  Xi = X

Rough idea

• Use ¹(k) to generate correlated queries

satisfying linear relations.

• 2 carefully designed tests: Test 1 and Test 2

TEST 1

• Sample X and Y indep. from Un. Let Z = X+Y

• Sample (X1, … ,Xk) from ¹(k) | Xi = X

(Y1, … ,Yk) from ¹(k) | Yi = Y

and (Z1, … , Zk) from ¹(k) | Zi = Z

Check if  f(Xi) +  f(Yi) =  f(Zi)
in spirit: the BLR test!

Rewriting Test 1

Defn: Let h(X) = f(X1) +  + f(Xk),

where (X1, … ,Xk) 2 ¹(k) |  Xi = X

• h is a probabilistic function.

• Test 1 rewritten: Sample X, Y from Un . Let Z=X+Y.

Check: h(X) + h(Y) = h(Z)

The BLR test!

Test 1 passes whp)

A related function h is close to a linear function
g under the uniform distribution

TEST 2

• Sample Z from ¹. Sample X, Y from Un such
that X+ Y = Z

• Sample (X1, … ,Xk) from ¹(k) | Xi = X

and (Y1, … ,Yk) from ¹(k) | Yi = Y

Check if  f(Xi) +  f(Yi) = f(Z)

Understanding Test 2

Assume Test 1 passes whp. So h ¼ linear g.
Want to show: for Z 2 ¹, f(Z) ¼ g(Z)

If Test 2 passes, f(Z) ¼  f(Xi) +  f(Yi)

But by defn of h,  f(Xi) +  f(Yi) = h(X) + h(Y)

Since Test 1 passes, h(X) + h(Y) ¼ g(X) + g(Y)

Since g is linear g(X) + g(Y) = g(Z)

Test 1 passes whp)

A related function h is close to a linear function
g under the uniform distribution

If Test 2 also passes whp)

f is close to the linear function g under the
¹ Distribution

To summarize

• “Extend” f defined on ¹ to h defined on F2
n

– uniform-correlatability

• Test if h is close to a linear function g under Un

– the BLR test

• Test if f is close to g under ¹

Some Questions

• What distributions are correlatable?

• Under what distributions is linearity testable?

• Are all* sparse linear codes are locally
testable?

Talk Overview

• Locally testable codes Testing linearity under
some distribution ¹

• Criterion for tolerant testing under ¹

• Local List Decoding and Testing with high error

• Time Complexity
– Dual BCH codes
– connections to the noisy parity problem

The high error regime

Recall: for Local testability:
If r 2 C, then Accept (with prob 1),
If r is ²-far from C, then Reject (with noticable probability)

In the high error regime:
If ¢(r, C) < ½ - ², then Accept
If ¢(r, C) ¼ ½ , then Reject

Distance estimation:
For 0< ²2 < ²1 < ½ ,
If ¢(r, C) < ½ - ²1 , then Accept
If ¢(r, C) > ½ - ²2 , then Reject

Theorem:

If C µ {0,1}N is a linear code which is

1. Sparse: |C| · Nc

2. “unbiased”: Each nonzero codeword has weight
2 (1/2- N-°, ½+ N-°)

Then C is locally testable and locally

list decodable from ½-² fraction errors using

only poly(1/²) queries.

Corollary:

Random sparse linear codes are locally
testable and locally list decodable with
½-² fraction errors using only poly(1/²)

queries.

Dual BCH codes are locally testable and
locally list decodable with ½-² fraction
errors using only poly(1/²) queries.

Proof

Reduce to the Hadamard Code!

The Hadamard code

• [BCHKS’96]: Fourier analysis proof of BLR Test
– Hadamard Code is testable in the high error regime

• [GL’89]: Hadamard Code is locally list decodable
up to 1/2-² fraction errors with poly(1/²)
queries.

• Distance estimation: For 0< ²2 < ²1 < ½ , In
poly(1/²1 -²2) queries, can distinguish between
1. (1/2 - ²1) close to a codeword
2. (1/2 - ²2) far from every codeword

Recall: Low error testing

• “Extend” f defined on ¹ to h defined on F2
n

– uniform-correlatability

• Test if h is close to a linear function g under Un

– the BLR test

• Test if f is close to g under ¹

Recall: from f to h - Uniform
Correlatability

The problem in the high error
regime:

f could be somewhat close to linear, but
h could be very far from linear.

So can’t deduce anything about closeness

of f from closeness of h 

Independent uniform correlatability

• C: Sparse, unbiased code

• S: Set of columns of generator matrix

– S is a large set (|S| ¼ 2n/k) with small Fourier
bias (¼ 2-n/10k).

S

Sum of few
independent
samples from
S
nearly uniform

Extending f to all of F2
n

Defn: Let h(X) = f(X1) +  + f(Xk),

where Xi are sampled independently from ¹ |  Xi = X

Defn: Let Corr¹ (f,g) = 1 – 2 ¢¹(f,g)

• If ¢¹ (f,g) = (1 - ®)/2 , then ¢Un(h,g) ¼ (1 - ®k)/2

CorrU (h,g) ¼ Corr x 2 ¹(k) (h(X),g(X))

= Corr x1,..,xk2 ¹(f(X1)+ ..+f(Xk) , g(X1) + ..+ g(Xk))

= [Corr¹(f,g)]k

Getting oracle access to h

Recall: h(X) = f(X1) +  + f(Xk),

where Xi are sampled independently from ¹ |  Xi = X

f

S µ F2
n

h
F2

n

Given oracle access to f, can simulate
oracle access to h.

X

From f to h

• Given oracle access to f, can simulate oracle
access to the extended function h.

• ¢Un(h, L) essentially captures ¢¹(f, L)

• We understand testing over Un very well.

• We can transfer questions of list decoding,
testing, distance estimation over ¹ to those over
Un.

In the language of codes: XOR

X1 X2 X3 ….. XN

Xijkh = Xi + Xj + Xk + Xh

Uniform distribution on

columns: Un !
Repeated Hadamard code

G =

G©k =

Talk Overview

• Locally testable codes Testing linearity under
some distribution ¹

• Criterion for tolerant testing under ¹

• Local List Decoding and Testing with high error

• Time Complexity
– Dual BCH codes
– connections to the noisy parity problem

Time Complexity

Recall: h(X) = f(X1) +  + f(Xk),

where Xi are sampled independently from ¹ |  Xi = X

• Need to “Back Sample”.

In general (for a random set S) could take time poly(|S|).

f

S µ F2
n

h
F2

n

Dual-BCH Codes

• The set S µ F2
n is structured.

– [KL05]: For X 2 F2
n, can efficiently compute (in

time polylog (|S|)) which k-subsets of S sum to X.

f

S µ F2
n

h
F2

n

Time complexity: decoding a random
linear code

Theorem:

If C µ {0,1}N is a linear code of bias =
N-° then C is list decodable with ½-²

fraction errors in time exp(n/loglog n)

Proof: Reduce to the Hadamard code!

[BKW03, Ly05]: Learning noisy parities:

The Hadamard code can be decoded from
random samples from a received word (a code
word corrupted with random errors) in time
exp(n/log n)

[FGKP06]: Agnostically learning parities:

The Hadamard code can be list decoded from
random samples from a received word in time
exp(n/log n)

Main features

• Need to take super-constantly many sums of S
to get to Hadamard

– Noise rate gets very high

• Getting random samples from h is easy given
access to random samples from f.

– Back sampling not needed.

Thank you!

