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Locally Testable Codes

• Let C ½ F2
N be a linear code. 

• C is locally testable if there is a tester T

such that :

Given oracle access to r 2 F2
N

T  queries r in few locations

• If r 2 C, then Accept

• If r is ²-far from C, then Reject

r



The Hadamard Code

X1 X2 X3 …..                                                  X2
n

G  =

n £ 2n

m¢X1 m¢X2 …                                   …                 m¢X2
nE(m)  = 

E(m) is the truth table
of the linear function 

m ¢ x  

r1 r2 …                                 …                 r2
nR   = 

The received word R is 
some function on all on 

F2
n



Linearity Testing of Boolean Functions

Given oracle access to
f : F2

n  F2

Test using few queries if f is linear. 

• If  f is linear, Accept
• If f is ²-far from all g that are linear, Reject

f

F2
n

Prx[f(x)  g(x)] > ²



BLR Linearity Test

• Choose  x, y uniformly at random
• Query f(x), f(y) and f(x+y)

– Check if 
• If Yes, then Accept.
• If No, then Reject

Theorem [BLR ’90]:  
Hadamard Code is locally testable

– If f is linear, then test accepts with probability 1.
– If f is ² -far (under the uniform distribution) from being 

linear,  test rejects with probability  > ²0 > 0

f(x)  +   f(y)     =     f(x+y)
?



LTCs and Linearity Testing

X1 X2 X3 …..                                                  XN

X1 X2 X3 …                                 XN

G  =

m¢X1 m¢X2 …                                             …                 m¢XN

F2
n

Received word 
R is function 
defined on S

G is  a 
generator 
matrix for 
the code C

Each codeword: 
partial truth-

table of a linear 
function

C is locally testable if (using queries to S) 
Can distinguish between
1) R is a linear function on S                 
2)  R is ²-far (on S) from all linear g  

E(m)  =

R  = 

Pr X 2 ¹ [f(x)  g(x)] > ²

S Let ¹ denote the 
uniform distribution 
on  S



Talk Overview

• Locally testable codes Testing linearity under  
some  distribution ¹

• Criterion for testing under ¹

• Local List Decoding and Testing with high error 

• Time Complexity
– Dual BCH codes
– connections to the noisy parity problem



Testing Linearity under General 
Distributions

• Given 

– a distribution   ¹ over F2
n

• ¹ distance (g,h) = Prx2 ¹ [g(x)  h(x)]

– Oracle  access to    f : F2
n  F2

f 

A 3 query 
test actually 
works for all 
distributions! 

[HK07]                 

F2
n

A Goal:   If f is linear, Accept
If  f is ²-far from all linear functions in  ¹ distance, Reject



An odd consequence 

¹
f linear

f random

Goal:   If f is linear, Accept
If  f is ²-far from all linear functions in  ¹ distance, Reject



The moral

The tester should make queries 
essentially according to ¹

¹
f linear

f random



Stronger Goal

¹
f linear

f random

Stronger Goal:   With high probability,  accept 
functions  that are close to linear
“Tolerant property testing” [PRR]



Tolerant Linearity Testing

• Given 
– a distribution   ¹ over F2

n

– Oracle  access to    f : F2
n  F2

• If  f is close to linear in ¹ -distance, then Accept 
with high probability

• If  f is far from linear in ¹ -distance, then 
Reject with noticeable probability

The BLR Linearity Tester is a Tolerant Tester for Un



Connection to Locally Testable Codes

• For every linear code C, there is a distribution 

¹ such  that

– C is locally testable                   linearity is tolerantly

testable under ¹.

• Tolerance crucial

Uniform distribution on 
the columns of the 

generator matrix for C 
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Need for correlation

• Say the test queries x1, …, xk

• Each query xi 2 F2
n essentially

according to ¹

• xi’s should satisfy some linear relation

• A bare minimum for testing:
– The existence of such a correlated distribution.

¹



Uniform Correlatability

• Definition: ¹ is k-uniformly correlatable if

there exists a joint distribution

1. Each Xi is distributed as ¹
2. X =  Xi is distributed uniformly

Let ¹(k) denote this joint distribution

X1 X2 … Xk  Xi = X



Theorem

If ¹ is k-uniformly correlatable, then 
linearity is tolerantly testable under ¹ in 

O(k) queries

Holds for tolerantly testing homomorphisms
between any two abelian groups (under general 

distributions).



Tolerantly testable distributions

• Corollary: Linearity is tolerantly testable with 
a constant number of queries under:

1. Product distributions

2. Symmetric distributions supported on words of 
weight 2 [° n, (1-°) n]

3. Low Fourier-bias distributions
• e.g. uniform distribution over a large random subset

– “Sparse random linear codes are locally testable” 
[KS07]

– Generalizes [KS07] to arbitrary groups



Theorem:

If C µ {0,1}N is a linear code which is

1. Sparse: |C| · Nc

2. “unbiased”: Each nonzero codeword has 
weight 2 (1/2- N-°, ½+ N-°)

Then C is locally testable with constantly 
many queries.



Proof that Uniform Correlatability
testability

Recall:
Given distribution ¹ that is k-uniformly correlatable.
There exists
Such that

1. Each Xi is distributed as ¹
2. X =  Xi is distributed uniformly over F2

n

• Let ¹(k) denote the joint  distribution (X1, …, Xk)

• Let ¹(k) |  Xi = X  denote the joint  distribution of 

(X1, …, Xk)  conditioned on  X
i
= X 

• Let Un denote the uniform distribution on F2
n

X1 X2 … Xk  Xi = X



Rough idea

• Use ¹(k) to generate correlated queries 

satisfying linear relations.

• 2 carefully designed tests: Test 1 and Test 2



TEST 1

• Sample X and Y indep. from Un. Let Z = X+Y

• Sample (X1, … ,Xk) from   ¹(k) | Xi = X

(Y1, … ,Yk)  from  ¹(k) | Yi = Y

and (Z1, … , Zk) from  ¹(k) | Zi = Z

Check if      f(Xi) +  f(Yi) =  f(Zi)
in spirit: the BLR test!



Rewriting Test 1

Defn:           Let    h(X) = f(X1) +  + f(Xk),    

where  (X1, … ,Xk)  2 ¹(k) |  Xi = X

• h is a probabilistic function.

• Test 1  rewritten: Sample X, Y from Un . Let Z=X+Y.

Check:   h(X) + h(Y) = h(Z)

The BLR test!  



Test 1 passes whp )

A related function h is close to a linear function 
g under the uniform distribution



TEST 2

• Sample Z from ¹.  Sample X, Y from Un such 
that    X+ Y  = Z 

• Sample (X1, … ,Xk) from   ¹(k) | Xi = X

and      (Y1, … ,Yk) from    ¹(k) | Yi = Y

Check if     f(Xi) +  f(Yi) = f(Z)



Understanding Test 2

Assume Test 1 passes whp.  So  h ¼ linear g.
Want to show: for Z 2 ¹,        f(Z) ¼ g(Z)

If Test 2 passes,            f(Z) ¼  f(Xi) +  f(Yi)

But by defn of h,           f(Xi) +  f(Yi) = h(X) + h(Y)   

Since Test 1 passes,     h(X) + h(Y) ¼ g(X) + g(Y)  

Since g is linear            g(X) + g(Y) = g(Z)



Test 1 passes whp )

A related function h is close to a linear function 
g under the uniform distribution

If Test 2 also passes whp )

f is close to the linear function g under the 
¹ Distribution



To summarize

• “Extend”  f defined on ¹ to h defined on F2
n

– uniform-correlatability

• Test if h is close to a linear function g under Un

– the BLR test

• Test  if f is close to g under ¹



Some Questions

• What distributions are correlatable?

• Under what distributions is linearity testable?

• Are all* sparse linear codes are locally 
testable?  
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The high error regime

Recall:   for Local testability: 
If r 2 C, then Accept (with prob 1), 
If r is ²-far from C, then Reject (with noticable probability)

In the high error regime:
If  ¢(r, C) <   ½  - ², then Accept
If ¢(r, C) ¼ ½  , then Reject

Distance estimation: 
For   0< ²2 < ²1 < ½ , 
If  ¢(r, C) <   ½  - ²1 , then Accept
If  ¢(r, C) >   ½  - ²2 , then Reject



Theorem:

If C µ {0,1}N is a linear code which is

1. Sparse: |C| · Nc

2. “unbiased”: Each nonzero codeword has weight 
2 (1/2- N-°, ½+ N-°)

Then C is locally testable and locally

list decodable from  ½-² fraction errors using

only poly(1/²) queries.



Corollary:

Random sparse linear codes are locally
testable and locally list decodable with  
½-² fraction errors using only poly(1/²) 

queries. 

Dual BCH codes are locally testable and 
locally list decodable with  ½-² fraction 
errors using only poly(1/²)  queries. 



Proof

Reduce to the Hadamard Code!



The Hadamard code 

• [BCHKS’96]:  Fourier analysis proof of BLR Test
– Hadamard Code is testable in the high error regime

• [GL’89]:  Hadamard Code is locally list decodable 
up to   1/2-² fraction errors with poly(1/²)
queries.

• Distance estimation:  For   0< ²2 < ²1 < ½ ,  In 
poly(1/²1 -²2) queries, can distinguish between
1. (1/2 - ²1) close to a codeword
2. (1/2 - ²2) far from every codeword



Recall: Low error testing

• “Extend”  f defined on ¹ to h defined on F2
n

– uniform-correlatability

• Test if h is close to a linear function g under Un

– the BLR test

• Test  if f is close to g under ¹



Recall: from f to h - Uniform 
Correlatability

The problem in the high error 
regime:

f could be somewhat close to linear, but 
h could be very far from linear. 

So can’t deduce anything about closeness 

of f from closeness of h  



Independent uniform correlatability

• C:  Sparse, unbiased code

• S:  Set of columns of generator matrix 

– S is a large set (|S| ¼ 2n/k)   with small Fourier 
bias  (¼ 2-n/10k ).

S

Sum of few 
independent
samples from 
S 
nearly uniform



Extending f  to all of F2
n

Defn:       Let    h(X) = f(X1) +  + f(Xk),    

where  Xi are sampled  independently from ¹ |  Xi = X

Defn:   Let Corr¹ (f,g) = 1 – 2 ¢¹(f,g)

• If  ¢¹ (f,g) = (1 - ®)/2 , then   ¢Un(h,g)  ¼ (1 - ®k)/2

CorrU (h,g) ¼ Corr x 2 ¹(k)  (h(X),g(X)) 

=  Corr x1,..,xk2 ¹(f(X1)+ ..+f(Xk) , g(X1) + ..+ g(Xk)) 

=  [Corr¹(f,g)]k



Getting oracle access to h

Recall: h(X) = f(X1) +  + f(Xk),    

where  Xi are sampled  independently from ¹ |  Xi = X

f

S µ F2
n

h
F2

n

Given oracle access to f, can simulate 
oracle access to h. 

X



From f to h

• Given oracle access to  f,  can simulate oracle 
access to the extended function h. 

• ¢Un(h, L)   essentially captures  ¢¹(f, L)

• We understand testing over Un very well.

• We can transfer questions of list decoding, 
testing, distance estimation over ¹ to those over 
Un.



In the language of codes: XOR

X1 X2 X3 …..                             XN

Xijkh = Xi + Xj + Xk + Xh

Uniform distribution on 

columns: Un !
Repeated Hadamard code

G  =

G©k =
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Time Complexity

Recall: h(X) = f(X1) +  + f(Xk),    

where  Xi are sampled  independently from ¹ |  Xi = X

• Need to  “Back Sample”. 

In general (for a random set S) could take time poly(|S|). 

f

S µ F2
n

h
F2

n



Dual-BCH Codes

• The set  S µ F2
n is structured. 

– [KL05]:  For  X 2 F2
n, can efficiently  compute (in 

time polylog (|S|))  which k-subsets of S sum to X.    

f

S µ F2
n

h
F2

n



Time complexity: decoding a random 
linear code

Theorem:

If C µ {0,1}N is a linear code of bias = 
N-° then C is list decodable with  ½-²

fraction errors in time exp(n/loglog n)



Proof: Reduce to the Hadamard code!

[BKW03, Ly05]:  Learning noisy parities:

The Hadamard code can be decoded from 
random samples from a received word (a code 
word corrupted with random errors) in time 
exp(n/log n)

[FGKP06]: Agnostically learning parities:

The Hadamard code can be list decoded from 
random samples from a received word in time 
exp(n/log n)



Main features 

• Need to take super-constantly many sums of S  
to get to Hadamard

– Noise rate gets very high

• Getting random samples from h is easy given 
access to random samples from f. 

– Back sampling not needed. 



Thank you!


