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Locally Testable Codes

* Let C C F," be alinear code.
* Cislocally testable if there is a tester T
such that :
Given oracle accesstor € F,N

T queries r in few locations
e Ifr € C, then Accept
e If ris e-far from C, then Rejec




The Hadamard Code

E(m) is the fruth table
of the /inear function
m- - X

E(m) =] m-X; m-X, .. m-X,n

R = rl rz oo (YY) rzn

The received word R is
some function on all on
F,"




Linearity Testing of Boolean Functions

Given oracle access to
. n

f

X
Test using few queries if fis linear.

* |f fislinear, Accept
e Iffis e-far from all g that are linear, Reject

™N Pr.[f(x) = g(x)] > €




BLR Linearity Test

* Choose x, y uniformly at random
e Query f(x), f(y) and f(x+y)
— Check if ?

* If Yes, then Accept. f(x) + fly) = f(x+y)
* If No, then Reject

Theorem [BLR "90]:
Hadamard Code is locally testable

— If fis linear, then test accepts with probability 1.

— If fis e-far (under the uniform distribution) from being
linear, test rejects with probability >¢, >0




LTCs and Linearity Testing

s 2 A Let 1 denote the
— uniform distribution
generator on S
matrix for I
the code C G XX X Xy

Each codeword:
partial truth-
table of a linear
function

m-Xy

Received word
D e_ £ .. _ _a2°_ __

C is locally testable if (using queries to S)
Can distinguish between
1) R is a linear_functierom S Prye  lfx) =gl > ¢
| 2) Ris e*far (on S) from all linear g




Talk Overview

Locally testable codes Testing linearity under
some distribution u

Criterion for testing under u
Local List Decoding and Testing with high error

Time Complexity
— Dual BCH codes
— connections to the noisy parity problem



Testing Linearity under General
Distributions

e Given

— a distribution [/ over F,"
* pdistance (g,h) = Pr, . .’ [g(x) # h(x)]
— Oracle accessto f:F,"—>F,
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A 3 query
test actually
works for all
distributions!
[HKO7]
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An odd consequence
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The moral
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f linear

The tester should make queries
essentially according to



Stronger Goal
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Tolerant Linearity Testing

e Given
— a distribution & over F,"
— Oracle accessto f:F,"—>F,

* If fisclose to linearin . -distance, then Accept
with high probability

* If fis farfrom linear in x-distance, then
Reject with noticeable probability

The BLR Linearity Tester is a Tolerant Tester for U,



Connection to Locally Testable Codes

* For every linear code C, there is a distribution

(i such that
' linearity is tolerantly

testable under LI. w__

— Cis locally testable

Uniform distribution on
the columns of the
generator matrix for C

 Tolerance crucial
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Need for correlation

Say the test queries xg, ..., X

Each query x, € F," essentially ‘
according to u '

x.'s should satisfy some linear relation

A bare minimum for testing:
— The existence of such a correlated distribution.



Uniform Correlatability

- Definition: 14 is k-uniformly correlatable if

there exists a joint distribution
Xl X2 Xk Z Xi =X

1. Each X is distributed as /L
2. X=X X isdistributed uniformly

Let ,u,(k) denote this joint distribution



Theorem

If 11 is k-uniformly correlatable, then
linearity is tolerantly testable under u in
O(k) queries

Holds for tolerantly testing homomorphisms
between any two abelian groups (under general
distributions).



Tolerantly testable distributions

* Corollary: Linearity is tolerantly testable with
a constant number of queries under:

1. Product distributions

2. Symmetric distributions supported on words of
weight € [y n, (1) n]

3. Low Fourier-bias distributions
 e.g. uniform distribution over a large random subset

— “Sparse random linear codes are locally testable”
[KSO7]

— Generalizes [KSO7] to arbitrary groups




Theorem:

If C C {0,1}N is a linear code which is
1. Sparse: |C] < N¢

2. "unbiased”: Each nonzero codeword has
weight € (1/2- N7, $+ N™)

Then C is locally testable with constantly
many queries.




Proof that Uniform Correlatability
T—) testability

Recall:
Given distribution u that is k-uniformly correlatable.
There exists

X X, .. X =
Such that L : 2 X=X

1. Each X;is distributed as /L
2. X=X isdistributed uniformly over F,"

* Let ,u,(k) denote the joint distribution (X, ..., X,)

* Let ,u(") | 2. X, =X denote the joint distribution of

(Xy, -, X;) conditioned on 2. X =X
* letU, denote the uniform dlstrlbutlon on F,n



Rough idea

e Use ¥ to generate correlated queries
satisfying linear relations.

* 2 carefully designed tests: Test 1 and Test 2



TEST 1

* Sample Xand Y indep. from U, LetZ=X+Y

* Sample (X, ... ,X;) from /,l,(k)

(Yy, ... .Y, ) from /,l,(k)
and (Z,, ..., Z,) from /,l,(k)

> X =X
>Y, =Y
>7=2

Checkif 2 f(X;) + 2 f(Y;) = 2. f(Z,)
in spirit: the BLR test!




Rewriting Test 1

Defn: Let h(X) = f(X;) + --- + (X)),
where (X, ..., X,) € p ] X X. =X

* his aprobabilistic function.
* Test 1 rewritten: Sample X, Y from U, . Let Z=X+Y.
Check: h(X) + h(Y) = h(2)

The BLR test!









Understanding Test 2

Assume Test 1 passes whp. So h = linear g.
Want to show: forZ € u, f(Z) ~ g(2)

If Test 2 passes, f(z) =~ 2 f(X)+ 2 f(Y)
But by defn of h, 2 f(X.) + 22 f(Y.) = h(X) + h(Y)
Since Test 1 passes, h(X)+ h(Y) ~ g(X) + g(Y)

Since g is linear g(X) + g(Y) = g(2)






To summarize

* “Extend” f defined on u to h defined on F,"

* Testif his close to a linear function g under U,

* Test if fis close to g under



Some Questions

e What distributions are correlatable?

* Under what distributions is linearity testable?

e Are all* sparse linear codes are locally
testable?
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The high error regime

"Recall: for Local testability: A

If r € C, then Accept (with prob 1),

\If r is e-far from C, then Reject (with noticable probabilityl
N

(In the high error regime:
If Alr,C)< %-¢ then Accept

\If Alr, C) = %, then Reject

AN

/Distance estimation:
For O<e, <€, <,
If Alr,C)< % -¢€, ,then Accept

\If A(r,C)> % -e€,,then Reject




Theorem:

If C C {0,1}N is a linear code which is
1. Sparse: |C|] < Ne
2. "unbiased”: Each nonzero codeword has weight

e (1/2- N7, 3+ N™)
Then C is locally testable and locally
list decodable from 3%-¢ fraction errors using
only poly(1/¢) queries.




Corollary:

Random sparse linear codes are locally
testable and locally list decodable with
3-¢ fraction errors using only poly(1/¢)

queries.

Dual BCH codes are locally testable and
locally list decodable with 3-¢ fraction
errors using only poly(1/¢) queries.




Proof

Reduce to the Hadamard Code!



The Hadamard code

* |[BCHKS'96]: Fourier analysis proof of BLR Test

— Hadamard Code is testable in the high error regime

* [GL'89]: Hadamard Code is locally list decodable
upto 1/2-e¢ fraction errors with poly(1/¢)
qgueries.

* Distance estimation: For 0<e,<¢€;<7%, In
poly(1/e, -€,) queries, can distinguish between
1. (1/2-¢,) close to a codeword
2. (1/2-¢,) far from every codeword



Recall: Low error testing

* “Extend” f defined on u to h defined on F,"

* Testif his close to a linear function g under U,

* Test if fis close to g under



Recall: from f to h - Uniform
Correlatability




Independent uniform correlatability

* C: Sparse, unbiased code

* S: Set of columns of generator matrix

— Sisalargeset (|S| ~ 2"%) with small Fourier
bias (~ 27/10k),

[Sum of few A

independent
samples from
S

\nearly unifor'mj




Extending f to all of F,"

Defn:  Let h(X)=f(X))+ --- +f(X,),
where X: are sampled independently from y | 2 X. = X

Defn: Let Corr, (fg) =1-2 A (f,g)

« If A (fg)=(1-a)/2,then Ay, (hg) =~ (1- ak)/2



Getting oracle access to h

Recall: h(X) =f(X,) + --- +f(X,),
where X are sampled independently from 1 | 2 X. = X

Given oracle access to f, can simulate
oracle access to h.




From ftoh

 Given oracle access to f, can simulate oracle
access to the extended function h.

Ay,(h, L) essentially captures A (f, L)
* We understand testing over U _ very well.

 We can transfer questions of list decoding,
testing, distance estimation over u to those over
U

n.



In the language of codes: XOR

6 -

X.| | %, T Xy,

G =

Uniform distribution on
columns: U, |

Repeated Hadamard code

Xikn = Xi + X; + X, + X,
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Time Complexity

Recall: h(X)=f(X))+ .- +f(X,),
where X: are sampled independently from . | 22 X, = X

F,n

h [ ]

F,"

* Needto “Back Sample”.
In general (for a random set S) could take time poly(|S|).



Dual-BCH Codes

* Theset S C F,"is structured.

— [KLO5]: For X € F,™ can efficiently compute (in
time polylog (|S|)) which k-subsets of S sum to X.

/ N

SGF,f

h [ ]

"



Time complexity: decoding a random
linear code

Theorem:

If C C {0,1}N is a linear code of bias =

N-7 then C is list decodable with 3-¢
fraction errors in time exp(n/loglog n)




Proof: Reduce to the Hadamard code!

[BKWO03, Ly05]: Learning noisy parities:

The Hadamard code can be decoded from
random samples from a received word (a code
word corrupted with random errors) in time
exp(n/log n)

[FGKPO6]: Agnostically learning parities:

The Hadamard code can be list decoded from
random samples from a received word in time
exp(n/log n)



Main features

* Need to take super-constantly many sums of S
to get to Hadamard

— Noise rate gets very high

e Getting random samples from h is easy given
access to random samples from f.

— Back sampling not needed.



Thank you!



