
1

Transitive-Closure Spanners

Sofya Raskhodnikova
Penn State University

Based on joint work with
Arnab Bhattacharyya MIT

Elena Grigorescu MIT

Kyomin Jung MIT

David Woodruff IBM Almaden

and with Madhav Jha Penn State

Graph Spanners [Awerbuch85,Peleg Schäffer89]

A subgraph H of G is a k-spanner
if for all pairs of vertices u, v in G,
distanceH(u,v) ≤ k distanceG(u,v)

Goal: to find a sparsest k-spanner
Applications:
• efficient routing
• protocols in unsynchronized networks
• parallel /distributed algorithms for approximate shortest paths

2

dense graph G sparse subgraph H

3

Transitive-Closure Spanners

Transitive closure TC(G) has an edge from u to v iff

G has a path from u to v

k-TC-spanner H of G has distanceH(u,v) ≤ k iff

G has a path from u to v

Alternatively: k-TC-spanner of G is a k-spanner of TC(G)

G TC(G)

4

Example: Directed Line on n Vertices

• 2-TC-spanner ≤ n log n edges

……

• 3-TC-spanner O(n log log n) edges

• 4-TC-spanner O(n log* n) edges

• k-TC-spanner O(n (k,n)) edges
– Add a (k-2)-TC-spanner on hubs

– Connect each node to the hubs before and after

– Recurse on the fragments between hubs

n1/2 hubs

Previous work

Structural results on TC-spanners
(what is a sparsest k-TC-spanner for a given graph family?)

• Shortcut graphs (special case when |E(H)|· 2 |E(G)|)
[Thorup 92, 95, Hesse 03]

• For directed line/trees [Thorup 97]
implicit in

– data structures [Yao 82, Alon Schieber 87, Chazelle 87, Bodlaender Tel
Santoro 94]

– property testing
[Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

– access control [Attalah Frikken Blanton 05]

• For low-dimensional posets

– access control [Attalah Blanton Fazio Frikken 09]

Computational results on directed spanners
(given a graph, compute a sparsest k-spanner)

• O(log n)-approximation algorithm for k=2 [Kortsarz Peleg 94]

• O(n2/3 polylog n)-approximation for k=3 [Elkin Peleg 99]
5

Our Contributions

• Common abstraction for several applications [BGJRW09]
– property testing

• testing monotonicity of functions
• testing if a function f:{1,…,n}  R is Lipschitz [Jha R]

– access control

– data structures

• Structural results on TC-spanners

– path-separable graphs [BGJRW09]

– directed hypercube/hypergrid [BGJRW]

– low-dimensional posets [BGJRW]

• Computational results on directed spanners

k-TC-Spanner: Given a graph, compute a sparsest k-TC-spanner

– new algorithms, inapproximability results [BGJRW09]

6

Application 1: Testing if a List is Sorted

• Is a list of n numbers sorted?

Requires reading entire list.

• Is a list of n numbers sorted or ²-far from sorted?

(An ² fraction of list entries have to be changed to make it sorted.)

[Ergün Kannan Kumar Rubinfeld Viswanathan 98]: O((log n)/²) time

[Fischer 01]: (log n) queries

• Special case of testing monotonicity of functions defined in [Goldreich
Goldwasser Lehman Ron 98]

7

1
2

Is a list sorted or ²-far from sorted?

[Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

Test can be viewed as: Pick a random edge from sparsest 2-TC-spanner for
the line and compare its endpoints. Reject if they are out of order.

1 2 5 4 3 6 7
Claim 1. There are · n log n edges in the 2-TC-spanner.

Claim 2. Green numbers are sorted.

Proof: Any two green numbers are connected by a length-2 path of black edges

Analysis of the test:

• All sorted lists are accepted.

• If a list is ²-far from sorted, it has ¸ ² n red numbers,) ¸ ² n/2 red edges

– If £((log n)/²) edges are checked, a red edge will be discovered w.p. ¸2/3

8

1
2

1
2

5 4 3

Is a list sorted or ²-far from sorted?

[Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

Test can be viewed as: Pick a random edge from sparsest 2-TC-spanner for
the line and compare its endpoints. Reject if they are out of order.

1 2 5 4 3 6 7
Claim 1. There are · n log n edges in the 2-TC-spanner.

Claim 2. Green numbers are sorted.

Conclusion: It suffices to check O((log n)/²) random edges from 2-TC-spanner.

Observation:
The same test/analysis apply to any property of a list of numbers if

• it can be expressed in terms of pairs of numbers

• it is transitive: (x,y) and (y,z) are good) (x,z) is good

9

1
2

1
2

5 4 3

Generalization of Sortedness to Matrices

3 4 5 6
3 4 5 6
2 3 4 5
1 2 3 4

• Is a matrix sorted along all rows and columns or far from sorted

(many numbers have to be changed to make it sorted)?

• [Goldreich Goldwasser Lehman Ron Samorodnitsky 00, Batu Rubinfeld
White 99, Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99,
Halevy Kushilevitz 04] considered this problem for d-dimensional matrices.

• Is a function f : {1,…,m}d ! R monotone or ²-far from monotone?

[DGLRRS99]: O(d ¢ (log m) ¢ (log |R|) /²) time

[Fischer Lehman Newman Raskhodnikova Rubinfeld Samorodnitsky 02]:

for m = 2 and R = {0,1}, need (log log d) queries

10

1
2

Monotonicity of Functions Over PO domains

[FLNRRS 02]:

Graph = partially ordered domain; node labels = values of the function

• A function is monotone if there are no violated edges (along which labels
decrease): 1 0

• A function is ²-far from monotone if ¸ ² fraction of labels need to be
changed to make it monotone.

• Testing monotonicity is equivalent to several other testing problems.

11

1

0

1

0

2 4 3 7651

3 4 5 6

3 4 5 6

2 3 4 5

1 2 3 4

1

0

1

0

Monotonicity Testers via Sparse 2-TC-spanners

Lemma. G has a 2-TC-spanner with s(n) edges



monotonicity of functions on G can be tested in time O(s(n)/(² n))

Implications of structural bounds on the size of 2-TC-spanners:

• Lower bounds for a hypercube and (hyper)grid [BGJRW]:

TC-spanner method does not improve sortedness testers for matrices

• Upper bounds for other graph families [BGJRW09]:

better monotonicity testers for those graph families
e.g., for planar graphs run time improved from O((n1/2 log n)/²) [FLNRRS02] to

O((log2 n)/²)

12

1
2

Application 2: Access Control

13

Efficient key management in access hierarchies [Attalah Frikken Blanton 05, Attalah
Blanton Frikken 06, Santis Ferrara Massuci 07, Attalah Blanton Fazio Frikken 09]

Used in content distribution, operating systems and project development

[Attalah Blanton Fazio Frikken 09]: access hierarchies are often low-dim posets
(can be embedded into low-dim grids via order-preserving embeddings).

Access

class with

private

key ki Permission edge with

public key Pij

Need ki to efficiently
compute kj from Pij

To speed up key derivation time, add shortcut edges consistent with
permission edges

Steiner TC-spanners

In the access control application, one can add new nodes to the
TC-spanner

14

H is a Steiner k-TC-spanner of G if

• vertices(G)  vertices(H)

• distanceH(u,v) ≤ k if G has a path from u to v

 otherwise

Observation: Steiner vertices do not decrease the number of
edges in sparsest TC-spanners of grids.

Application 3: Data Structures

Computing partial products in a semigroup [Yao 82, Alon Schieber 87, Chazelle
87, Bodlaender Tel Santoro 94, Thorup 97]

Example:

Goal: quickly answer queries max(ai ,…,aj) for all i · j.

• Question: How many values should we store if we want to compute max of
at most k numbers per query?

• Answer: storage = size of sparsest k-TC-spanner for the directed line.

This example generalizes to other partial products and to directed trees.

15

a1 ai aj an… … …

max(ai ,…,aj)

Our Contributions

• Common abstraction for several applications [BGJRW09]
– property testing

• testing monotonicity of functions
• testing if a function f:{1,…,n}  R is Lipschitz [Jha R]

– access control

– data structures

• Structural results on TC-spanners

– path-separable graphs [BGJRW09]

– directed hypercube/hypergrid [BGJRW]

– low-dimensional posets [BGJRW]

• Computational results on directed spanners

k-TC-Spanner: Given a graph, compute a sparsest k-TC-spanner

– new algorithms, inapproximability results [BGJRW09]

16

Structural Results on TC-spanners

Let Sk(G)= size of sparsest k-TC-spanner of G

• Path-separable graphs [BGJRW09]
(e.g., H-minor-free graphs: planar, bounded genus, and bounded tree-width)

– Path separators were defined in [Abraham Gavoille 06]

For O(1)-path-separable graphs G with n nodes, Sk(G)= O(n log n ¢(k,n))

– E.g., improves run time of monotonicity testers on planar graphs

from O((n1/2 log n)/²) [FLNRRS02] to O((log2 n)/²).

• Directed hypergrid [m]d [BGJRW]
– For small m:

log2(S2([m]d)) = cmd where c2 ¼ 1.16, c3 ¼ 2.03, c4 ¼ 2.82

For reference: [2]d has £(2d d) edges; TC([2]d) has 3d = 2cd edges where c¼ 1.59

– For m3:

S2([m]d) · md logd m, and this is tight up to O(2d (log log m)d-1) factor.

– Monotonicity testers for hypercube/hypergrid cannot be improved using
the TC-spanner method.

17

Structural Results on Steiner TC-spanners

Let Sk(G)= size of sparsest Steiner k-TC-spanner of G

• Low-dimensional posets
(posets embeddable into low-dim grids via order-preserving embeddings).

Previous work [Attalah Blanton Fazio Frikken 09, DeSantis Ferrara Masucci 07]

[BGJRW]

18

Setting of k Bounds on Sk(G) Authors

k = 2d-2+i for i  2 O(n (logd-1 n) (k,n)) [ABFF]

k = 2d + log* n O(n logd-1 n) [ABFF]

k = 3 for fixed d O(n logd-1 n log log n) [DFM]

Setting of k Our Bounds on Sk(G)

k = 2 O(n logd n) for all d Ω(n (log n / log log n) d) for fixed d

k 3 n logΩ(d) n for fixed d

Our Contributions

• Common abstraction for several applications [BGJRW09]
– property testing

• testing monotonicity of functions
• testing if a function f:{1,…,n}  R is Lipschitz [Jha R]

– access control

– data structures

• Structural results on TC-spanners

– path-separable graphs [BGJRW09]

– directed hypercube/hypergrid [BGJRW]

– low-dimensional posets [BGJRW]

• Computational results on directed spanners

k-TC-Spanner: Given a graph, compute a sparsest k-TC-spanner

– new algorithms, inapproximability results [BGJRW09]

19

2-TC-Spanner of an m m Grid

Lemma. A sparsest 2-TC-spanner of an m  m grid has

· m2 log2 m and (m2 log2 m /log log m) edges.

Proof:

Upper bound: graph product of two 2-TC-spanners of the line.

Lower bound: a tradeoff argument, balancing number of edges of
different types.

20

1
2

Lower Bound for an m m Grid: Starting Point

Lemma. A sparsest 2-TC-spanner of a line with m nodes has

(m log m) edges.

Proof:

• Each pair of nodes connected by a green arc contributes an edge

crossing the midline.

•  m/2 edges cross the midline.

• Continue recursively to obtain (m log m) bound.

21

1
2

midline

Lower Bound for an m m Grid: First Attempt

Approach: Recursively halve the grid in both dimensions hoping

that each time (m2 log m) edges are cut.

Problem: A 2-TC-spanner could contain the transitive closure for

each quarter, and only 3m2 edges crossing the cut.

There is a tradeoff between the number of internal edges and

the number of edges crossing the cut.

22

Two-Line Tradeoff Lemma

Lemma. Consider a 2-TC-spanner of an m  2 grid. Cut it horizontally. If it has

 m log2 m / 32 internal edges, it has  m log2 m / (16 log log m) crossing edges.

• log m / (2 log log m) stages, each contributing m/8 crossing edges.

• In the first stage, divide the graph into log2 m blocks of the same length.

• Call an edge long if it starts and ends in different blocks (short otherwise).

• L = set of low left nodes, not incident to long crossing edges.

R = set of high right nodes, not incident to long crossing edges.

23

midline

long internal edgeL

R

Two-Line Tradeoff Lemma: Stage 1 in the Proof

Lemma. Consider a 2-TC-spanner of an m  2 grid. Cut it horizontally. If it has

 m log2 m / 32 internal edges, it has  m log m / (16 log log m) crossing edges.

• log m / (2 log log m) stages, each contributing m/8 crossing edges.

• In the first stage, divide the graph into log2 m blocks of the same length.

• u  L can have a length-2 path to v  R only via a long internal edge.

• Each long low internal edge can be used by  m/log2 m such pairs (u,v).

• If there are < m/8 long crossing edges, there are > m2/16 pairs in L  R.

• Then there are > (m2/16) / (m/log2 m) = m log2 m / 16 (long) internal edges.

• Contradiction. That is, stage 1 indeed contributes m/8 long crossing edges.

24

midline

long internal edgeL

R
v

u

Two-Line Tradeoff Lemma: Subsequent Stages

Lemma. Consider a 2-TC-spanner of an m  2 grid. Cut it horizontally. If it has

 m log2 m / 32 internal edges, it has  m log2 m / (16 log log m) crossing edges.

• log m / (2 log log m) stages, each contributing m/8 crossing edges.

• In each subsequent stage, call blocks from the previous stage megablocks.

• Divide each megablock into log2 m blocks of the same length.

• Call an edge long if it starts and ends in different blocks, but stays within
the same megablock.

• Show that there are m/8 long crossing edges (contribution of this stage).

25

megablock

2-TC-Spanner of the Grid:

Lemma. A sparsest 2-TC-spanner of an m  m grid has

· m2 log2 m and (m2 log2 m /log log m) edges.

Lemma. A sparsest 2-TC-spanner of the directed grid [m]d has

· md logd m and (md logd m / (2d (log log m)d-1)) edges.

26

1
2

Our Contributions

• Common abstraction for several applications [BGJRW09]
– property testing

• testing monotonicity of functions
• testing if a function f:{1,…,n}  R is Lipschitz [Jha R]

– access control

– data structures

• Structural results on TC-spanners

– path-separable graphs [BGJRW09]

– directed hypercube/hypergrid [BGJRW]

– low-dimensional posets [BGJRW]

• Computational results on directed spanners

k-TC-Spanner: Given a graph, compute a sparsest k-TC-spanner

– new algorithms, inapproximability results [BGJRW09]

27

Computational Results on k-TC-Spanner
A

lg
o
ri

th
m

s

Setting of k Approxi-

mability

Authors/

Technique

Notes

k=2 O(log n) [Kortsarz Peleg]

k=3 O(n2/3 polylog n) [Elkin Peleg]

k > 2 O((n log n)1-1/k) CP+sampling Applies to directed spanners ,….

Simplifies [EP] for k=3

k = (log n) O((n log n)/k2) path sampling Better than directed spanners

Setting of k Inapproxi

-mability

Assumption Notes

k = 2 (log n) P  NP Matches upper bound

constant k > 2 (2log1-² n) NP(DTIME(npolylog n) Improvement)breakthrough

k = n1-° 8  > 0 (1+²) P  NP

H
a
rd

n
es

s

28

Open Questions

• Can TC-spanner perspective be used to get new algorithms for
problems related to monotonicity testing?

– approximating distance to monotonicity or the length of LIS

– online/distributed reconstruction of monotone functions

– in streaming

• Other applications of TC-spanners and Steiner TC-spanners?

29

