
Testing by Implicit Learning

Rocco Servedio

Columbia University

ITCS Property Testing Workshop

Beijing

January 2010

What this talk is about

1. “Testing by Implicit Learning:” method for testing classes of
Boolean functions

• Combines learning theory ingredients with junta testing [FKRSS04]

• Works for classes of functions that are “well approximated by juntas”

• Gives new query-efficient testing results for many classes

2. Extension of basic method: computationally efficient testing for
sparse GF(2) polynomials

3. Different extension of basic method: query-efficient testing for
many classes with “low-dimensional Fourier spectrum”

Basic framework for whole talk

Tester makes black-box queries to arbitrary

“Property” of Boolean functions class of all functions

that have the property

Examples: linear functions over GF(2) (parities) [BLR93]

degree- GF(2) polynomials [AKKSR03]

halfspaces [MORS09]

monotone functions [DGLRRS99, GGLRS00]

-term DNF formulas [DLMORSW07]

etc.

oracle for

Basic framework continued

Tester must output

• “yes” whp if

• “no” whp if is -far from

every

any output OK

tester must output “yes”

Tester must output “no”

Here & throughout talk, measure distance w.r.t. uniform distribution

over domain

Main concern: information-theoretic # of queries required (but

computationally efficient algorithms are nice too…)

1. Testing by Implicit Learning

“Testing for Concise Representations”

Ilias Diakonikolas Homin Lee Kevin Matulef

Krzysztof Onak Ronitt Rubinfeld Andrew Wan

Learning a concept class

Setup: Learner is given a sample of

labeled examples

• Target function is

unknown to learner

• Each example in sample is

independent, uniform over

Goal: For every , with probability learner should output a

hypothesis such that

“PAC learning concept class under the uniform distribution”

Proper Learning via “Occam’s Razor”

A learning algorithm for is proper if it outputs hypotheses from .

Generic proper learning algorithm for any finite class :

• Draw labeled examples

• Output any that is consistent with all examples.

error

finding such an may be

computationally hard…

Why it works:

• Suppose true error rate of is

• Then Pr[consistent with random examples]

So Pr[any “bad” is output] is at most

Testing via proper learning

[GGR98]: properly learnable testable with same # queries.

• Run learning algorithm to learn to error ; hypothesis obtained is

• Draw random examples, use them to check that

Why it works:

• is -accurate

 estimated error of is

• is -far from estimated error

of is since is -far from

It’s not that easy

[GGR98]: properly learnable testable with same # queries.

Great! But...

• Occam’s Razor proper learner uses many examples:

• Even for very simple classes of functions over variables (like
literals/dictators), any learning algorithm must use
examples…

and in testing, we want query complexity independent of

Occam’s Razor: Every is properly learnable

Some known property testing results

Question: [PRS02] what about non-monotone -term DNF?

parity functions [BLR93]

deg- polynomials [AKK+03]

literals [PRS02]

conjunctions [PRS02]

-juntas [FKRSS04, B08, B09]

-term monotone DNF [PRS02]

halfspaces [MORS09]

Class of functions over # of queries

“Testing via Implicit Learning” results

Theorem: [DLMORSW07]

The class of over is testable with poly(s/) queries.

s-leaf decision trees

size-s branching programs

size-s Boolean formulas (AND/OR/NOT gates)

size-s Boolean circuits (AND/OR/NOT gates)

s-sparse polynomials over GF(2)

s-sparse algebraic circuits over GF(2)

s-sparse algebraic computation trees over GF(2)

s-term DNF

All results follow from basic “testing by implicit learning” approach.

Testing by Implicit Learning

Approach works for any class that is “well-approximated by juntas:”

for every there exists an such that

– is close to

– depends on few variables

(-close depends on vars)

When it works:

How it works:

Running example: testing whether

is an -term DNF

versus

-far from every -term DNF

-term DNF are well-approximated by juntas

Let be any -term DNF formula:

There is an -approximating DNF with terms where

- each term contains variables, and hence

- is a -junta

• Any term with variables is satisfied with probability

• Delete all (at most) such terms from to get

Occam + approximation + [GGR98]?

Given any -term DNF , there is a -approximating DNF with

terms where each term contains variables.

Now Occam requires

examples…better, but still depends on

So can try to learn = {all -term -DNF over }

Take : makes so close to that if

we only use uniform random examples, we

can pretend

Getting rid of ?
Each approximating DNF depends only on variables.

Suppose we knew those variables.

Then we’d have = {all -term -DNF over

so Occam would need only examples,

independent of !

But, can’t explicitly identify even one variable with examples...

The fix: implicit learning

High-level idea: Learn the “structure” of

without explicitly identifying the relevant variables

where is an unknown mapping.

Algorithm tries to find an approximator

Implicit learning

Need to generate many correctly labeled random

examples of :

each string is bits

the -term -DNF

approximator for

How can we learn “structure” of without knowing relevant variables?

Then can do Occam (brute-force search for consistent DNF).

Implicit learning cont

Vars of are the variables that have

high influence in : flipping the

bit is likely to change value of

• setting of other variables

almost always doesn’t matter

bits

Given random -bit labeled

example , want

to construct -bit

example

1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 1 1 0 1 1 10 1 0 1 1 1 0 1

0 1 1 1 1 0 0 0

Do this using techniques of [FKRSS02] “Testing Juntas”

Use independence test of [FKRSS02]

Let be a subset of variables.

• Fix a random assignment to variables not in

“Independence test” [FKRSS02]:

Intuition:

– if has all low-influence variables, see same value for whp

– if has a high-influence variable, see different value sometimes

1 0 0 1 1 0 1 1 1 0 0 1 1 0 0 0 0 1 0 1 0 1 1 0 0 1 0 0 1 0 1 1

1 0 0 1 1 0 1 1 1 0 0 1 1 0 0 0 0 1 0 1 0 1 1 0 0 1 0 0 1 0 1 1

1 0 0 1 1 0 1 1 1 0 0 1 1 0 0 0 0 1 0 1 0 1 1 0 0 1 0 0 1 0 1 1

1

01 1 0 1 0 1 1 1 1 0

0 1 0 0 1 0 1 0 0 1

• Draw two independent settings of variables in , query on these 2 points

Constructing our examples

Follow [FKRSS02]:

– Randomly partition variables into blocks; run independence test on each block

– Can determine which blocks have high-influence variables

– Each block should have at most one high-influence variable (birthday paradox)

Given random -bit labeled

example , want

to construct -bit

example

1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 1 1 0 1 1 10 1 0 1 1 1 0 1

0 1 1 1 1 0 0 0

? ? ? ? ? ? ? ? ?

Constructing our examples

We know which blocks have high-influence variables; need to determine how the

high-influence variable in the block is set.

Consider a fixed high-influence block String partitions into :

Given random -bit labeled

example , want

to construct -bit

example

1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 1 1 0 1 1 10 1 0 1 1 1 0 1

0 1 1 1 1 0 0 0

bits set to 0 in bits set to 1 in

Run independence test on each of to see which one has the

high-influence variable.

? ?

Repeat for all high-influence blocks to get all bits of

The test and its completeness

Suppose is an -term DNF.

• Then is close to -term -DNF

• Test constructs sample of random -bit examples

that are all correctly labeled according to whp.

• Test checks all -term -DNFs over

for consistency with sample. Outputs “yes” if any

consistent DNF found, otherwise outputs “no.”

• is consistent, so test outputs “yes”

Sketch of soundness of test

Suppose is far from every -term DNF

• If far from every -junta, [FKRSS02] catches it (too

many high-influence blocks)

• So suppose close to an -junta and algorithm

constructs sample of -bit examples labeled by .

• Then whp there exists no -term -DNF consistent with

sample, so test outputs “no”

– If there were such a DNF consistent with sample, would have

close to close to

Occam by assumption

so close to -- contradiction

END OF

SKETCH

Testing by Implicit Learning

s-leaf decision trees

size-s branching programs

size-s Boolean formulas (AND/OR/NOT gates)

size-s Boolean circuits (AND/OR/NOT gates)

s-sparse polynomials over GF(2) (of ANDs)

s-term DNF

Can use TbIL approach for any class with the following property:

All these classes are testable with poly() queries.

s-sparse algebraic circuits over GF(2)

s-sparse algebraic computation trees over GF(2)

Many classes have this property…

• is an -approximator for

• depends on few variables

such that

2. Extension of basic method:

computationally efficient testing for

s-sparse GF(2) polynomials

“Efficiently Testing Sparse GF(2) Polynomials”

Ilias Diakonikolas Andrew WanKevin MatulefHomin Lee

Pros and cons of basic

“Testing by Implicit Learning”

Approach works for many classes of functions

“One-size-fits-all” algorithm

Can we use smarter learning algorithms to get
(computationally) more efficient testers?

Yes (in at least one case)…but some complications ensue.

Computationally inefficient:

- Running time is

- Running time bottleneck: brute-force search as proper learning algorithm

(try all -term DNFs over variables)

GF(2) Polynomials
GF (2) polynomial p : {0,1}n {0,1}

parity (sum) of monotone conjunctions (monomials)

e.g. p(x) = 1 + x1x3 + x2 x3 + x1 x4 x5 x6 x8 + x2 x7 x8 x9 x10

• “ sparsity ” = number of monomials

• Polynomial is s-sparse if it has at most s monomials

class of s-sparse GF(2) polynomials over {0,1}n

Well-studied from various perspectives:

• [BS90, FS92, SS96, B97, BM02] (learning)

• [K89, GKS90, RB9, EK89, KL93, LVW93] (approximation,

approximate counting)

Main Result

Theorem : There is a testing algorithm for the class {all s-sparse
GF(2) polynomials} that uses queries
and runs in time

Ingredients for main result:

• “Testing by Implicit Learning” framework [DLMORSW07]

• Efficient Proper Learning Algorithm [Schapire-Sellie’96]

• New Structural Theorem:

“s-sparse polynomials simplify nicely under certain -

carefully chosen - random restrictions”

(Matches lower bound on # queries required [DLMORSW07])

Efficient Proper Learning of

s-sparse GF(2) Polynomials

Theorem [SS’96]: There is a uniform distribution query algorithm that

properly PAC learns s-sparse polynomials over to accuracy in

time (and query complexity)

Great! But…

Learning Algorithm uses black-box (membership) queries.

Black-box queries to (an -junta which approximates)

are not so easy to simulate as uniform random examples…

Random Examples vs Queries
Let f: {0,1}n {0,1} be a sparse polynomial and f '

be some -approximator to f.

• Assume 1/ >> number of uniform random examples required

for Occam learning f '. Then, random examples for f are ok to use as

random examples for f '.

• But a black-box query algorithm may make few queries, yet

cluster those queries on the few inputs where f and f ' disagree. No

longer good enough for f ' to be a high-accuracy approximator of f.

The challenge

• Need to simulate black-box queries to a -approximator f ' which is an
s-sparse polynomial and an -junta. (Must get answer of f ' right
on every input!)

• To make this work, need to define the approximating function f ' carefully.

Roughly speaking, f ' is obtained as follows:

1. Randomly partition variables in r = poly (s /) subsets.

2. f ' = restriction obtained from f by setting all variables

in “low influence” subsets to 0.

Intuition: Kill all “long” monomials.

Let f: {0,1}n {0,1} be an s-sparse polynomial. (presumably not a junta)

Illustration (I)
Suppose

p (x) = 1 + x1x3 + x2 x3 + x1 x4 x5 x6 x8 + x2 x7 x8 x9 x10

and r = 5.

Illustration (II)
Suppose

p (x) = 1 + x1x3 + x2 x3 + x1 x4 x5 x6 x8 + x2 x7 x8 x9 x10

and r = 5.

Randomly partition the variables into r subsets:

Illustration (III)
Suppose

p (x) = 1 + x1x3 + x2 x3 + x1 x4 x5 x6 x8 + x2 x7 x8 x9 x10

and r = 5.

Check “influence” of each subset (independence test):

green subsets: low influence

red subsets: high influence

Illustration (IV)
Suppose

p (x) = 1 + x1x3 + x2 x3 + x1 x4 x5 x6 x8 + x2 x7 x8 x9 x10

and r = 5.

p' (x) = p (x1, x2, x3, x4, x5, 0, x7, 0, 0, 0)

= 1 + x1x3 + x2 x3

Zero out variables in low-influence subsets:

Testing Algorithm for

s-sparse GF(2) Polynomials

1. Partition the coordinates into [n] into r = poly (s /) random subsets.

2. Distinguish subsets that contain a “high-influence” variable from
subsets that do not.

3. Consider restriction f ' obtained from f by “zeroing out” all the

variables in “low-influence” subsets.

4. “Implicitly” run [SS’96] using a “simulated” black-box oracle

for the function f '.
– Do implicit learning, construct query strings similar to

[DLMORSW07]

Why it Works - Structural Theorem

Theorem: Let p: {0,1}n {0,1} be an s-sparse polynomial.

Consider a random partition of the set [n] into r = poly (s /) many

subsets. Let p' be the restriction obtained by fixing all variables in

“low-influence” subsets to 0. Then, whp the following are true:

1. p' has at most one of its relevant variables in each surviving
subset;

2. p' consists of the monomials in p that consist entirely of high-
influence variables;

3. p' is an slog(s/)-junta that is -close to p.

Enables us to simulate black-box queries & thus “implicitly” run [SS96]

learning algorithm.

3. Different extension:
testing classes of functions with

low Fourier dimension

“Testing Fourier Dimensionality and Sparsity”

Parikshit Gopalan Karl Wimmer (L)Amir ShpilkaRyan O’Donnell

Fourier dimension

The class {all Boolean functions with Fourier dimension k} is

{all “k-juntas-of-parities”}, i.e. functions of the form

an arbitrary k-variable function

each an arbitrary

parity over {0,1}n

Example of Fourier dimension

monomials

has Fourier dimension at most

view inputs as

So k-sparse PTFs have Fourier dimension k.

Third main result:
Testing subclasses of k-dimensional functions

min s.t. is a -junta of parities

Let be a subclass of all -variable Boolean functions

The subclass of -dimensional functions induced by is the class

of functions over

i.e.

Ex: all linear threshold functions over variables

all -sparse polynomial threshold functions over

Main result:
Testing subclasses of k-dimensional functions

Theorem:

Let be any induced subclass of -dimensional functions.

There is a nonadaptive -query algorithm for testing .

So can test, e.g.,

• C = k-sparse PTFs over {-1,1}n (take C’ = LTFs)

• C = size-k decision trees with parity nodes (take C’ = decision trees

of size k)

• etc

Let be a subclass of all -variable Boolean functions

The subclass of -dimensional functions induced by is the class

Very sketchy sketch
Parities play the role of “influential variables” in basic TbIL approach.

Can’t explicitly identify them, but can determine the value they take in

any given example.

Construct an “implicit truth table”:

Check consistency with some

(So “learning” is trivial – get whole truth table.)

0 0 … 0 0 1

0 0 … 0 1 0

0 0 … 1 0 0

0 0 … 1 1 0

… … … … … …

1 1 … 1 0 1

1 1 … 1 1 1

Summary

1. “Testing by Implicit Learning:” method for testing classes of
Boolean functions

• Combines learning theory ingredients with junta testing [FKRSS04]

• Works for classes of functions that are “well approximated by juntas”

• Gives new query-efficient testing results for many classes

2. Extension of basic method: computationally efficient testing for sparse
GF(2) polynomials

• Uses sophisticated black-box-query algorithm from learning theory [SS96]

• Careful construction of junta approximator

3. Different extension of basic method: query-efficient testing
for many classes with “low-dimensional Fourier spectrum”

• Parities play role of variables in junta
• Really brute-force learning (build whole truth table!)

1. Future Work:

Testing by Implicit Learning

• What are the right lower bounds for testing classes like

-term DNF, size- decision trees, formulas, circuits…?

– Can get following [CG04], but feels like

right bound is ?

• Any way to extend TbIL to distribution-independent testing

framework?

– Obvious problem: may be hard to approximate by juntas…

2. Future Work:

Computationally Efficient TbIL

for s-sparse GF(2) polynomials

• Get runtime for more classes!

– Computationally efficient proper learning algorithms would yield these, but

these seem hard to come by

– First step: extend GF(2) results to any finite field . Want runtime

to be

• Main bottleneck: need fast proper learning algorithms that only evaluate

the poly being learned over inputs from

• [B97] requires runtime to learn -sparse

polynomials over

3. Future Work:
Testing subclasses of

k-dimensional functions

• Any way to do it with “real learning” (implicitly generate just a
sample rather than whole truth table)?

– Might lead to poly(k) query bounds in some cases, rather than
current 2k bound…

Thank

You

Very sketchy sketch (1)

Extends Fourier sparsity test with “Testing by Implicit Learning” ideas.

Fourier sparsity test: poly(s/e)-query test for C = s-sparse functions.

Works by hashing Fourier coefficients

of f into random cosets:

If f is s-sparse and we hash into O(s2) buckets, w.h.p. every coset
gets at most one nonzero Fourier coefficient (birthday paradox).

So can “isolate” all the parities…

