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What this talk is about

1. “Testing by Implicit Learning:”  method for testing classes of 
Boolean functions

• Combines learning theory ingredients with  junta testing [FKRSS04]

• Works for classes of functions that are “well approximated by juntas”

• Gives new query-efficient testing results for many classes 

2. Extension of basic method:  computationally efficient testing for 
sparse GF(2) polynomials

3. Different extension of basic method:   query-efficient testing for 
many classes with “low-dimensional Fourier spectrum”



Basic framework for whole talk

Tester makes black-box queries to arbitrary

“Property” of Boolean functions   class      of all functions

that have the property

Examples:            linear functions over GF(2)  (parities) [BLR93]

degree- GF(2) polynomials [AKKSR03]

halfspaces [MORS09]

monotone functions [DGLRRS99, GGLRS00]

-term DNF formulas [DLMORSW07]

etc.

oracle for



Basic framework continued

Tester must output 

• “yes” whp if 

• “no” whp if      is    -far from

every 

any output OK 

tester must output “yes” 

Tester must output “no” 

Here & throughout talk, measure distance w.r.t. uniform distribution

over domain 

Main concern:   information-theoretic  # of queries required (but 

computationally efficient algorithms are nice too…)



1.  Testing by Implicit Learning

“Testing for Concise Representations”

Ilias Diakonikolas Homin Lee Kevin Matulef

Krzysztof Onak Ronitt Rubinfeld Andrew Wan



Learning a concept class   

Setup: Learner is given a sample of 

labeled examples

• Target function is 

unknown to learner

• Each example      in sample is 

independent, uniform over 

Goal: For every          , with probability             learner should output a 

hypothesis                                     such that

“PAC learning concept class      under the uniform distribution”



Proper Learning via “Occam’s Razor”

A learning algorithm for     is proper if it outputs hypotheses from    .

Generic proper learning algorithm for any finite class       :    

• Draw                               labeled examples

• Output any             that is consistent with all      examples.

error

finding such an      may be 

computationally hard…

Why it works:

• Suppose true error rate of              is

• Then Pr[     consistent with      random examples]

So Pr[any “bad”            is output] is at most  



Testing via proper learning

[GGR98]:      properly learnable  testable with same # queries.

• Run learning algorithm to learn to error     ; hypothesis obtained is  

• Draw             random examples, use them to check that

Why it works:

•  is     -accurate 

 estimated error of      is  

• is    -far from       estimated error

of      is            since             is   -far from       



It’s not that easy

[GGR98]:      properly learnable  testable with same # queries.

Great!  But...

• Occam’s Razor proper learner uses many examples:

• Even for very simple classes of functions over      variables (like 
literals/dictators), any learning algorithm must use                   
examples…

and in testing, we want query complexity independent of    

Occam’s Razor:   Every      is properly learnable



Some known property testing results

Question: [PRS02] what about non-monotone -term DNF?

parity functions [BLR93]

deg- polynomials  [AKK+03]

literals [PRS02]

conjunctions [PRS02]

-juntas [FKRSS04, B08, B09]

-term monotone DNF [PRS02]

halfspaces [MORS09]

Class of functions over # of queries



“Testing via Implicit Learning” results

Theorem: [DLMORSW07]

The class of                     over               is testable with poly(s/  ) queries.

s-leaf decision trees

size-s branching programs

size-s Boolean formulas (AND/OR/NOT gates)

size-s Boolean circuits (AND/OR/NOT gates)

s-sparse polynomials over GF(2)

s-sparse algebraic circuits over GF(2)

s-sparse algebraic computation trees over GF(2)

s-term DNF

All results follow from basic “testing by implicit learning” approach.



Testing by Implicit Learning 

Approach works for any class       that is “well-approximated by juntas:”  

for every            there exists an              such that

– is close to   

– depends on few variables 

(   -close  depends on                 vars)  

When it works:

How it works:

Running example:      testing whether 

is an    -term DNF

versus

-far from every    -term DNF 



-term DNF are well-approximated by juntas

Let      be any     -term DNF formula:

There is an   -approximating DNF      with         terms where 

- each term contains                     variables, and hence 

- is a                    -junta

• Any term with                      variables is satisfied with probability  

• Delete all (at most    ) such terms from      to get     



Occam + approximation + [GGR98]?

Given any    -term DNF    ,  there is a   -approximating DNF       with

terms where each term contains                     variables.  

Now Occam requires 

examples…better, but still depends on       

So can try to learn = {all   -term                -DNF over              } 

Take               :    makes      so close to      that if 

we only use uniform random examples, we 

can pretend             



Getting rid of    ?
Each approximating DNF      depends only on                    variables.

Suppose we knew those variables.

Then we’d have = {all   -term                -DNF over                                

so Occam would need only                                           examples,

independent of    !

But, can’t explicitly identify even one variable with                 examples...



The fix:  implicit learning

High-level idea:  Learn the “structure” of      

without explicitly identifying the relevant variables

where                                         is an unknown mapping.

Algorithm tries to find an approximator  



Implicit learning

Need to generate                   many correctly labeled random 

examples of     :

each string      is                        bits 

the    -term                 -DNF 

approximator for   

How can we learn “structure” of      without knowing relevant variables?

Then can do Occam (brute-force search for consistent DNF).



Implicit learning cont

Vars of      are the variables that have 

high influence in     : flipping the 

bit is likely to change value of

• setting of other variables

almost always doesn’t matter

bits 

Given random     -bit labeled 

example                , want 

to construct                   -bit 

example

1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 1 1 0 1 1 10 1 0 1 1 1 0 1

0 1 1 1 1 0 0 0

Do this using techniques of [FKRSS02] “Testing Juntas”



Use independence test of [FKRSS02]

Let       be a subset of variables.

• Fix a random assignment to variables not in 

“Independence test” [FKRSS02]:

Intuition:  

– if       has all low-influence variables, see same value for      whp

– if       has a high-influence variable, see different value sometimes

1 0 0 1 1 0 1 1 1 0 0 1 1 0 0                                   0 0 1 0 1 0 1 1 0 0 1 0 0 1 0 1 1

1 0 0 1 1 0 1 1 1 0 0 1 1 0 0  0 0 1 0 1 0 1 1 0 0 1 0 0 1 0 1 1

1 0 0 1 1 0 1 1 1 0 0 1 1 0 0  0 0 1 0 1 0 1 1 0 0 1 0 0 1 0 1 1

1

01 1 0 1 0 1 1 1 1 0

0 1 0 0 1 0 1 0 0 1

• Draw two independent settings of variables in    , query     on these 2 points



Constructing our examples

Follow [FKRSS02]:

– Randomly partition variables into blocks; run independence test on each block

– Can determine which blocks have high-influence variables

– Each block should have at most one high-influence variable (birthday paradox)

Given random     -bit labeled 

example                , want 

to construct                   -bit 

example

1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 1 1 0 1 1 10 1 0 1 1 1 0 1

0 1 1 1 1 0 0 0

? ? ? ? ? ? ? ? ?



Constructing our examples

We know which blocks have high-influence variables; need to determine how the 

high-influence variable in the block is set.

Consider a fixed high-influence block         String      partitions       into                 :  

Given random     -bit labeled 

example                , want 

to construct                   -bit 

example

1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 1 1 0 1 1 10 1 0 1 1 1 0 1

0 1 1 1 1 0 0 0

bits set to 0 in   bits set to 1 in   

Run independence test on each of to see which one has the 

high-influence variable.

? ?

Repeat for all high-influence blocks to get all bits of   



The test and its completeness 

Suppose      is an    -term DNF. 

• Then      is close to    -term                 -DNF   

• Test constructs sample of random                   -bit examples 

that are all correctly labeled according to       whp.

• Test checks all -term                 -DNFs over

for consistency with sample.  Outputs “yes” if any 

consistent DNF found, otherwise outputs “no.”

• is consistent, so test outputs “yes”



Sketch of soundness of test

Suppose      is far from every    -term DNF

• If      far from every                    -junta, [FKRSS02] catches it (too 

many high-influence blocks)

• So suppose        close to an                   -junta       and algorithm 

constructs sample of                    -bit examples labeled by     .

• Then whp there exists no     -term                 -DNF consistent with 

sample, so test outputs “no” 

– If there were such a DNF     consistent with sample, would have

close to close to

Occam by assumption

so       close to          -- contradiction

END OF 

SKETCH



Testing by Implicit Learning

s-leaf decision trees

size-s branching programs

size-s Boolean formulas (AND/OR/NOT gates)

size-s Boolean circuits (AND/OR/NOT gates)

s-sparse polynomials over GF(2)   (      of ANDs)

s-term DNF

Can use TbIL approach for any class      with the following property:

All these classes are  testable with poly(     ) queries.

s-sparse algebraic circuits over GF(2)

s-sparse algebraic computation trees over GF(2)

Many classes have this property…

• is an    -approximator for 

• depends on few variables  

such that



2.  Extension of basic method:  

computationally efficient testing for 

s-sparse GF(2) polynomials

“Efficiently Testing Sparse GF(2) Polynomials”

Ilias Diakonikolas Andrew WanKevin MatulefHomin Lee



Pros and cons of basic

“Testing by Implicit Learning”

Approach works for many classes of functions

“One-size-fits-all” algorithm

Can we use smarter learning algorithms to get 
(computationally) more efficient testers?

Yes (in at least one case)…but some complications ensue.

Computationally inefficient:

- Running time is 

- Running time bottleneck:  brute-force search as proper learning algorithm

(try all    -term DNFs over                        variables) 



GF(2) Polynomials
GF (2) polynomial p : {0,1}n  {0,1}

parity (sum) of monotone conjunctions (monomials)

e.g.   p(x) = 1 + x1x3 + x2  x3 + x1  x4  x5  x6  x8 + x2  x7  x8  x9  x10 

• “ sparsity ” = number of monomials

• Polynomial is s-sparse if it has at most s monomials

class of s-sparse GF(2) polynomials over {0,1}n

Well-studied from various perspectives:    

• [BS90, FS92, SS96, B97, BM02] (learning) 

• [K89, GKS90, RB9, EK89, KL93, LVW93] (approximation, 

approximate counting)



Main Result

Theorem : There is a testing algorithm for the class         {all s-sparse 
GF(2) polynomials} that uses                     queries 
and  runs in time 

Ingredients for main result:

• “Testing by Implicit Learning” framework [DLMORSW07]

• Efficient Proper Learning Algorithm [Schapire-Sellie’96]

• New Structural Theorem:

“s-sparse polynomials simplify nicely under certain -

carefully chosen - random restrictions”

(Matches         lower bound on # queries required [DLMORSW07])



Efficient Proper Learning of 

s-sparse GF(2) Polynomials

Theorem [SS’96]: There is a uniform distribution query algorithm that 

properly PAC learns s-sparse polynomials over              to accuracy    in 

time (and query complexity) 

Great! But… 

Learning Algorithm uses black-box (membership) queries.

Black-box queries to      (an                   -junta which approximates    ) 

are not so easy to simulate as uniform random examples…



Random Examples vs Queries
Let f: {0,1}n  {0,1} be a sparse polynomial and f '

be some -approximator to f.

• Assume 1/ >> number of uniform random examples required 

for Occam learning f '. Then, random examples for f are ok to use as 

random examples for f '.

• But a black-box query algorithm may make few queries, yet 

cluster those queries on the few inputs where f and f ' disagree. No 

longer good enough for f ' to be a high-accuracy approximator of f.



The challenge

• Need to simulate black-box queries to a -approximator f ' which is an  
s-sparse polynomial and an -junta.  (Must get answer of f ' right 
on every input!)

• To make this work, need to define the approximating function f '  carefully.

Roughly speaking, f ' is obtained as follows:

1. Randomly partition variables in r = poly (s /) subsets.

2. f ' = restriction obtained from f by setting all variables 

in “low influence” subsets to 0.

Intuition:  Kill all “long” monomials.

Let f: {0,1}n  {0,1} be an s-sparse polynomial.   (presumably not a junta)



Illustration (I)
Suppose 

p (x) = 1 + x1x3 + x2  x3 + x1  x4  x5  x6  x8 + x2  x7  x8  x9  x10

and r = 5.



Illustration (II)
Suppose 

p (x) = 1 + x1x3 + x2  x3 + x1  x4  x5  x6  x8 + x2  x7  x8  x9  x10

and r = 5.

Randomly partition the variables into r subsets:



Illustration (III)
Suppose 

p (x) = 1 + x1x3 + x2  x3 + x1  x4  x5  x6  x8 + x2  x7  x8  x9  x10

and r = 5.

Check “influence” of each subset (independence test):

green subsets:  low influence

red subsets:  high influence



Illustration (IV)
Suppose 

p (x) = 1 + x1x3 + x2  x3 + x1  x4  x5  x6  x8 + x2  x7  x8  x9  x10

and r = 5.

p' (x) =  p (x1, x2, x3, x4, x5, 0, x7, 0, 0, 0)

= 1 + x1x3 + x2  x3

Zero out variables in low-influence subsets:



Testing Algorithm for 

s-sparse GF(2) Polynomials

1. Partition the coordinates into [n] into r = poly (s / ) random subsets.

2. Distinguish subsets that contain a “high-influence” variable from 
subsets that do not.

3. Consider restriction f ' obtained from f by “zeroing out” all the 

variables in “low-influence” subsets.

4. “Implicitly” run [SS’96] using a “simulated” black-box oracle

for the function f '.
– Do implicit learning, construct query strings similar to 

[DLMORSW07]



Why it Works - Structural Theorem

Theorem: Let p: {0,1}n  {0,1} be an s-sparse polynomial. 

Consider a random partition of the set [n] into r = poly (s /) many 

subsets. Let p' be the restriction obtained by fixing all variables in 

“low-influence” subsets to 0. Then, whp the following are true:

1. p' has at most one of its relevant variables in each surviving 
subset;

2. p' consists of the monomials in p that consist entirely of high-
influence variables;

3. p' is an  slog(s/)-junta that is -close to p.

Enables us to simulate black-box queries & thus “implicitly” run [SS96] 

learning algorithm.



3.  Different extension:
testing classes of functions with

low Fourier dimension

“Testing Fourier Dimensionality and Sparsity”

Parikshit Gopalan Karl Wimmer (L)Amir ShpilkaRyan O’Donnell



Fourier dimension

The class {all Boolean functions with Fourier dimension k} is

{all “k-juntas-of-parities”}, i.e. functions of the form

an arbitrary k-variable function

each       an arbitrary 

parity over {0,1}n



Example of Fourier dimension

monomials 

has Fourier dimension at most

view inputs as 

So k-sparse PTFs have Fourier dimension k.



Third main result:  
Testing subclasses of k-dimensional functions

min     s.t.     is a    -junta of parities

Let      be a subclass of all    -variable Boolean functions

The subclass of    -dimensional functions induced by      is the class

of functions over 

i.e. 

Ex:          all linear threshold functions over     variables

all    -sparse polynomial threshold functions over   



Main result:  
Testing subclasses of k-dimensional functions

Theorem:  

Let     be any induced subclass of    -dimensional functions.

There is a nonadaptive                    -query algorithm for testing    . 

So can test, e.g.,

• C = k-sparse PTFs over {-1,1}n (take C’ = LTFs)

• C = size-k decision trees with parity nodes (take C’ = decision trees

of size k)

• etc

Let      be a subclass of all    -variable Boolean functions

The subclass of    -dimensional functions induced by      is the class



Very sketchy sketch
Parities play the role of “influential variables” in basic TbIL approach. 

Can’t explicitly identify them, but can determine the value they take in 

any given example.

Construct an “implicit truth table”:

Check consistency with some               

(So “learning” is trivial – get whole truth table.)

0   0   …     0      0       1

0   0   …     0      1       0

0   0   …     1       0      0

0   0   …     1       1       0

…  …   …     …      …      …

1    1   …     1      0       1

1    1   …     1       1       1



Summary

1. “Testing by Implicit Learning:”  method for testing classes of 
Boolean functions

• Combines learning theory ingredients with  junta testing [FKRSS04]

• Works for classes of functions that are “well approximated by juntas”

• Gives new query-efficient testing results for many classes 

2. Extension of basic method:  computationally efficient testing for sparse 
GF(2) polynomials

• Uses sophisticated black-box-query algorithm from learning theory [SS96]

• Careful construction of junta approximator

3. Different extension of basic method:   query-efficient testing 
for many classes with “low-dimensional Fourier spectrum”

• Parities play role of variables in junta
• Really brute-force learning (build whole truth table!)



1.  Future Work:

Testing by Implicit Learning

• What are the right lower bounds for testing classes like    

-term DNF, size- decision trees, formulas, circuits…?

– Can get                       following [CG04], but feels like 

right bound is                        ?

• Any way to extend TbIL to distribution-independent testing 

framework?

– Obvious problem:  may be hard to approximate by juntas…



2.  Future Work:

Computationally Efficient TbIL 

for s-sparse GF(2) polynomials

• Get                      runtime for more classes!

– Computationally efficient proper learning algorithms would yield these, but 

these seem hard to come by

– First step:  extend GF(2) results to any finite field    .  Want runtime

to be  

• Main bottleneck:  need fast proper learning algorithms that only evaluate 

the poly being learned over inputs from

• [B97] requires                                 runtime to learn     -sparse

polynomials over



3.  Future Work:
Testing subclasses of 

k-dimensional functions

• Any way to do it with “real learning” (implicitly generate just a 
sample rather than whole truth table)?

– Might lead to poly(k) query bounds in some cases, rather than 
current 2k bound…



Thank 

You



Very sketchy sketch (1)

Extends Fourier sparsity test with “Testing by Implicit Learning” ideas.

Fourier sparsity test:  poly(s/e)-query test for C = s-sparse functions.

Works by hashing Fourier coefficients 

of f into random cosets:

If f is s-sparse and we hash into O(s2) buckets, w.h.p. every coset
gets at most one nonzero Fourier coefficient (birthday paradox).

So can “isolate” all the parities…


