External Sampling

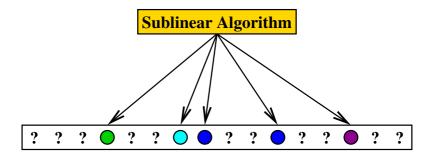
Krzysztof OnakMIT

Joint work with Alexandr Andoni, Piotr Indyk, and Ronitt Rubinfeld

Massive Data

Various models have been developed:

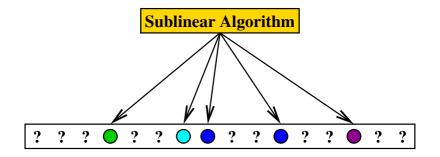
 Sublinear time algorithms (for instance, random sampling)



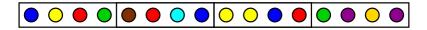
Massive Data

Various models have been developed:

 Sublinear time algorithms (for instance, random sampling)



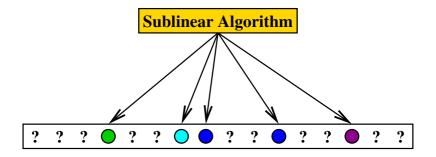
External memory algorithms for data on disk



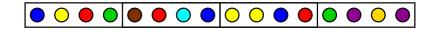
Massive Data

Various models have been developed:

 Sublinear time algorithms (for instance, random sampling)



External memory algorithms for data on disk

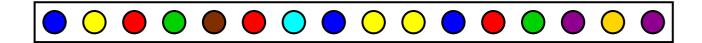


Can combine the two?

- Has to read entire block to get single sample
- Can decrease the number of block reads?

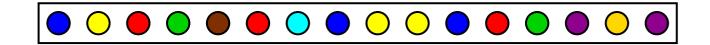
Estimating frequency

- Problem:
 - if frequency of $\bullet \geq 2f$, report YES
 - if frequency of \circ $\leq f$, report NO



Estimating frequency

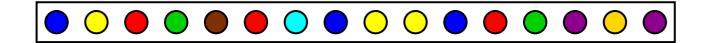
- Problem:
 - if frequency of $\bullet \geq 2f$, report YES
 - if frequency of \circ $\leq f$, report NO



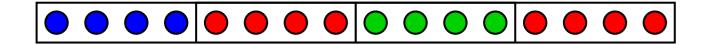
• Complexity: $\Theta(1/f)$ random samples

Estimating frequency

- Problem:
 - if frequency of $\bullet \geq 2f$, report YES
 - if frequency of \circ $\leq f$, report NO



- Complexity: $\Theta(1/f)$ random samples
- Sampling blocks doesn't help!



- Problems:
 - Distinctness
 - YES: all elements different
 - NO: must remove $\geq \epsilon n$ elements for distinctness

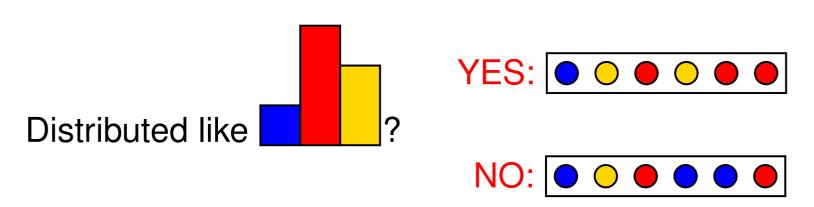
- Problems:
 - Distinctness
 - YES: all elements different
 - NO: must remove $\geq \epsilon n$ elements for distinctness
 - Uniformity [Goldreich-Ron, Batu-Fortnow-Rubinfeld-Smith-White]
 - **YES**: uniformly distributed on known set of size m ≤ n
 - NO: must modify $\geq \epsilon n$ elements for uniformity

Uniform on $\{ \bigcirc, \bigcirc, \bigcirc \}$?

YES: • • • • •

NO: • • • •

- Problems:
 - Distinctness
 - YES: all elements different
 - NO: must remove $\geq \epsilon n$ elements for distinctness
 - Uniformity [Goldreich-Ron, Batu-Fortnow-Rubinfeld-Smith-White]
 - **YES**: uniformly distributed on known set of size m ≤ n
 - NO: must modify $\geq \epsilon n$ elements for uniformity
 - Identity [Batu-Fortnow-Fischer-Kumar-Rubinfeld-White]
 - YES: distributed according to a known distribution
 - NO: must modify $\geq \epsilon n$ elements for the property



- Problems:
 - Distinctness
 - YES: all elements different
 - NO: must remove $\geq \epsilon n$ elements for distinctness
 - Uniformity [Goldreich-Ron, Batu-Fortnow-Rubinfeld-Smith-White]
 - **YES**: uniformly distributed on known set of size m ≤ n
 - NO: must modify $\geq \epsilon n$ elements for uniformity
 - Identity [Batu-Fortnow-Fischer-Kumar-Rubinfeld-White]
 - YES: distributed according to a known distribution
 - NO: must modify $\geq \epsilon n$ elements for the property
- All require $\Theta(\sqrt{n})$ samples for fixed ϵ
- We improve by factor $\tilde{\Theta}(\sqrt{B})$ to $\tilde{\Theta}(\sqrt{n/B})$ block reads
- Can show improvement (nearly) optimal

Distinctness

Standard Algorithm

Algorithm:

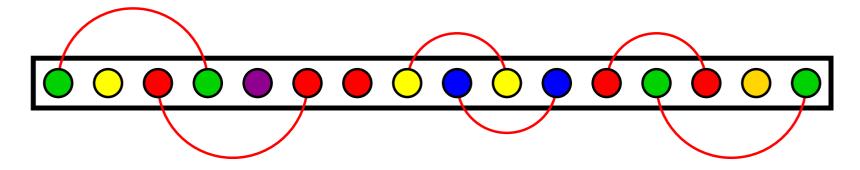
- Sample $O(\sqrt{n/\epsilon})$ elements from different locations
- If two sampled elements are equal, REJECT
- Otherwise, ACCEPT

Standard Algorithm

- Algorithm:
 - Sample $O(\sqrt{n/\epsilon})$ elements from different locations
 - If two sampled elements are equal, REJECT
 - Otherwise, ACCEPT
- YES instance: always accepts

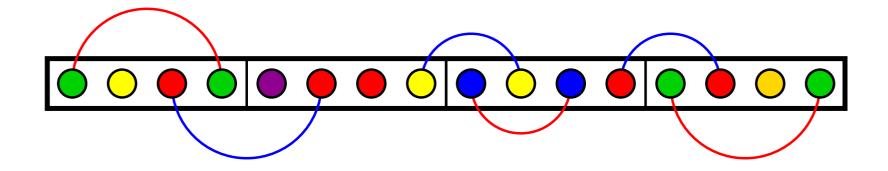
Standard Algorithm

- Algorithm:
 - Sample $O(\sqrt{n/\epsilon})$ elements from different locations
 - If two sampled elements are equal, REJECT
 - Otherwise, ACCEPT
- YES instance: always accepts
- NO instance:
 - $\Omega(\epsilon n)$ disjoint pairs of identical elements
 - Birthday paradox: algorithm samples one of them with constant probability

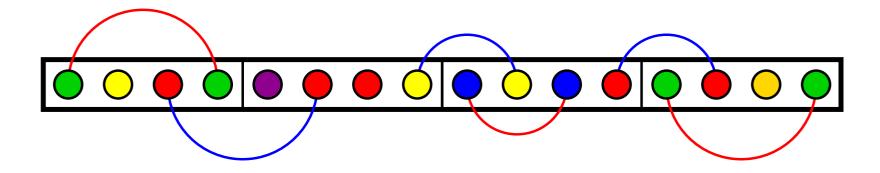


• This time: Sample $O(\sqrt{n/(\epsilon B)})$ blocks

- This time: Sample $O(\sqrt{n/(\epsilon B)})$ blocks
- Two kinds of pairs:
 - intra-block
 - inter-block

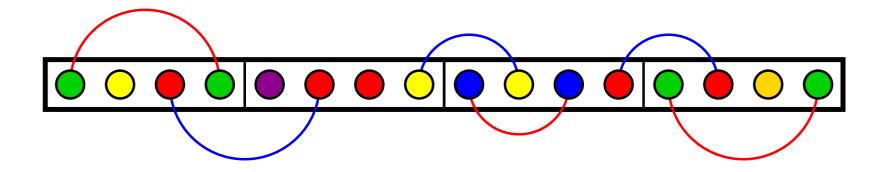


- This time: Sample $O(\sqrt{n/(\epsilon B)})$ blocks
- Two kinds of pairs:
 - intra-block
 - inter-block



• NO instance: $\Omega(\epsilon n)$ pairs of one of the kinds

- This time: Sample $O(\sqrt{n/(\epsilon B)})$ blocks
- Two kinds of pairs:
 - intra-block
 - inter-block



- NO instance: $\Omega(\epsilon n)$ pairs of one of the kinds
- Matching lower bound

Other Problems

Applications of Our Techniques

- Graph Isomorphism [Fischer-Matsliah]
 - Two graphs: known G and unknown H
 - YES: G and H isomorphic
 - NO: $\geq \epsilon n^2$ edges of H must be modified for isomorphism
 - Allowed queries: Is (u, v) edge of H?
 - Block model: adjacency matrix row by row on disk
 - Identity testing dominates the complexity

Applications of Our Techniques

- Graph Isomorphism [Fischer-Matsliah]
 - Two graphs: known G and unknown H
 - YES: G and H isomorphic
 - NO: $\geq \epsilon n^2$ edges of H must be modified for isomorphism
 - Allowed queries: Is (u, v) edge of H?
 - Block model: adjacency matrix row by row on disk
 - Identity testing dominates the complexity
- Metric Properties of Points [O.]
 - Does set of points embed into a tree metric? an ultrametric? ℓ_2^d ? ℓ_1^2 ?
 - Searching for k-tuple
 - Standard algorithms: $\approx O(n^{1-1/k})$ samples for fixed ϵ
 - Block model: $O((n/B)^{1-1/k})$ samples

Further Problems

- Monotonicity
 - Input: sequence of n numbers
 - YES: monotone
 - NO: must delete ϵn elements for monotonicity
 - Can improve from $O(\frac{1}{\epsilon} \log n)$ to $O(\frac{1}{\epsilon} \log (n/B))$

Further Problems

- Monotonicity
 - Input: sequence of n numbers
 - YES: monotone
 - NO: must delete ϵn elements for monotonicity
 - Can improve from $O(\frac{1}{\epsilon} \log n)$ to $O(\frac{1}{\epsilon} \log (n/B))$
- OPEN: Equality of Distributions [Batu-Fortnow-Rubinfeld-Smith-White]
 - Input: two sequences on disk
 - Problem: same distribution of items or at distance $\geq \epsilon$?
 - Standard model: $\tilde{O}(n^{2/3} \cdot \text{poly}(1/\epsilon))$

Further Problems

- Monotonicity
 - Input: sequence of n numbers
 - YES: monotone
 - NO: must delete ϵn elements for monotonicity
 - Can improve from $O(\frac{1}{\epsilon} \log n)$ to $O(\frac{1}{\epsilon} \log (n/B))$
- OPEN: Equality of Distributions [Batu-Fortnow-Rubinfeld-Smith-White]
 - Input: two sequences on disk
 - Problem: same distribution of items or at distance $\geq \epsilon$?
 - Standard model: $\tilde{O}(n^{2/3} \cdot \text{poly}(1/\epsilon))$
- Homework:

Check your favorite sublinear algorithm!!!