Maintaining a large matching and a small vertex cover

Krzysztof Onak (MIT) Ronitt Rubinfeld (Tel Aviv U. and MIT)

Setting

- Property testing?
- Dynamic graph algorithm
 Updates: insert or delete edge
- Quantity to approximate:
 - Min vertex cover
 - Max matching gives factor 2 approx to VC

How to maintain?

- Exact maximum matching: n^{1.495} update [Sankowski]
- Is polylog(n) update time possible?
 - If o(sqrt(n)) then improve maximum matching algorithm of [Micali Vazirani 80]
- What about polylog(n) update time for *approximation*?
- Main result: Data structure for max matching and vertex cover
 - randomized
 - constant approximation
 - polylog(n) amortized updated time

Why this talk here?

- Use techniques from [Parnas Ron]
 - who show an interesting connection between distributed algorithms and sublinear time approximation algorithms

Idea of Parnas Ron algorithm

- Parnas-Ron Vertex Partition algorithm:
 - -i ← 1
 - While edges remain:
 - Remove vertices of degree > dmax $/4^{i-1}$ and adjacent edges
 - Increment i
 - Output *all* removed vertices as VC
- Yields O(log dmax) approximation in O(log dmax) phases
- For constant degree graphs, yields constant time approx algorithm

Idea of our algorithm

- Starting point of new data structure:
 - Simulate Parnas-Ron partition with some laziness
 - Need to keep track of approximate number of preceding vertices
 - Gives O(log n) approximation for VC (and max matching)
- Better idea:
 - Also remove a random large matching at each
 phase
 - Gives O(1) approximation for VC and max matching

Sublinear algorithms conquer the world?

