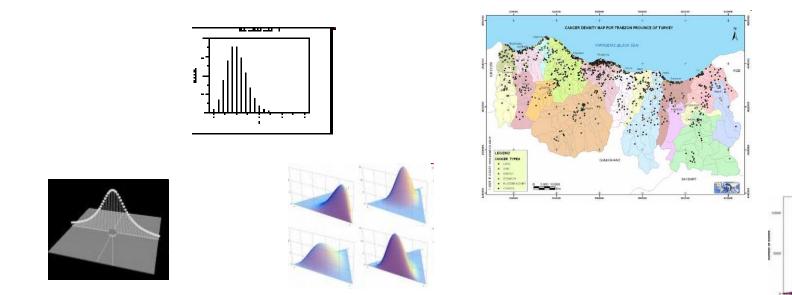
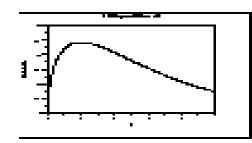
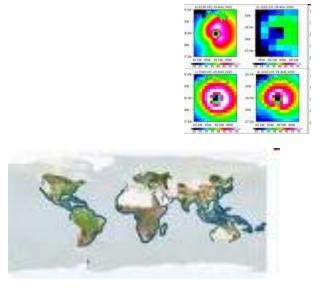
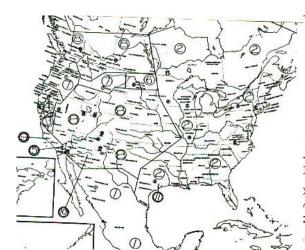
Testing properties of distributions

Ronitt Rubinfeld Tel Aviv University and MIT









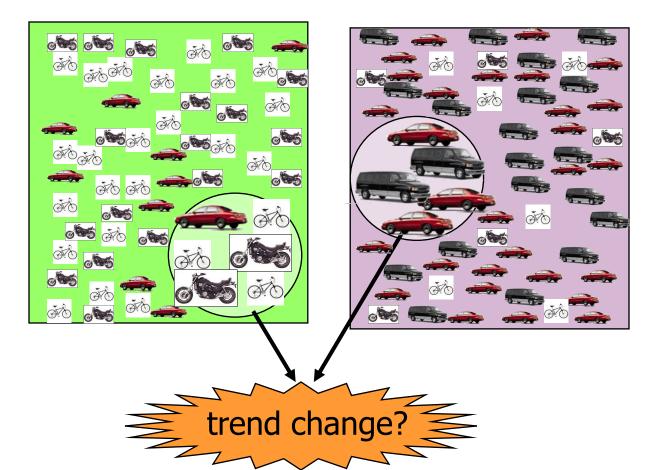
What properties do your distributions have?

Play the lottery?

Testing closeness of two distributions:

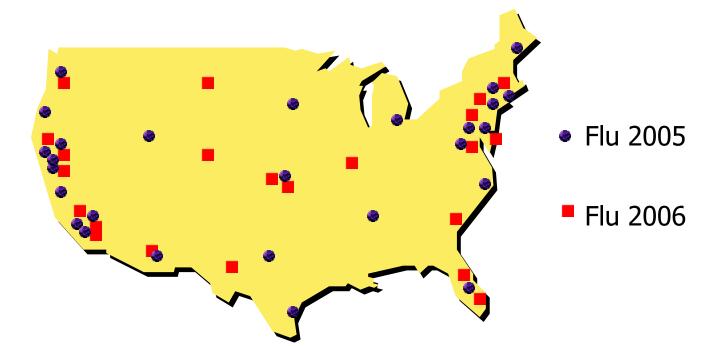
Transactions of 20-30 yr olds

Transactions of 30-40 yr olds



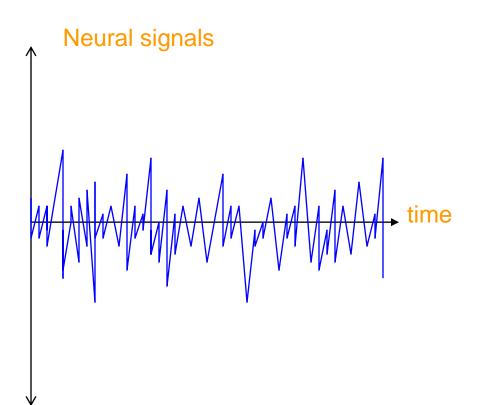
Outbreak of diseases

- Similar patterns?
- Correlated with income level?
- More prevalent near large airports?



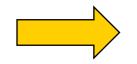
Information in neural spike trails

[Strong, Koberle, de Ruyter van Steveninck, Bialek '98]



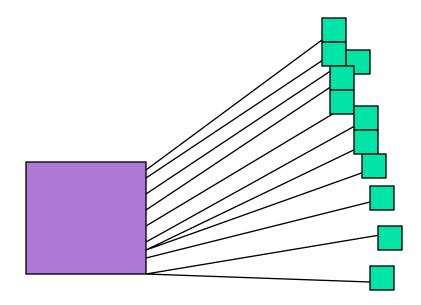
- Each application of stimuli gives sample of signal (spike trail)
- Entropy of (discretized) signal indicates which neurons respond to stimuli

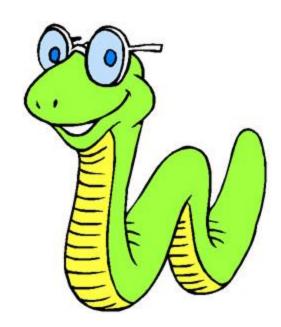
Compressibility of data



Worm detection

 find ``heavy hitters" – nodes that send to many distinct addresses



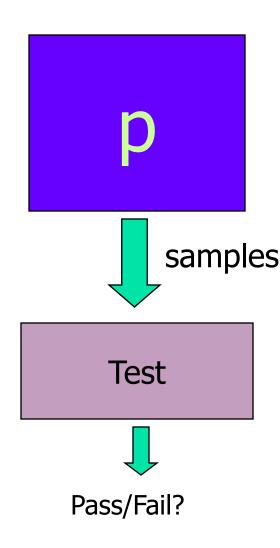


Testing properties of distributions:

- Decisions based on samples of distribution
- Focus on large domains
 - Can sample complexity be *sublinear* in size of the domain?

Rules out standard statistical techniques, learning distribution

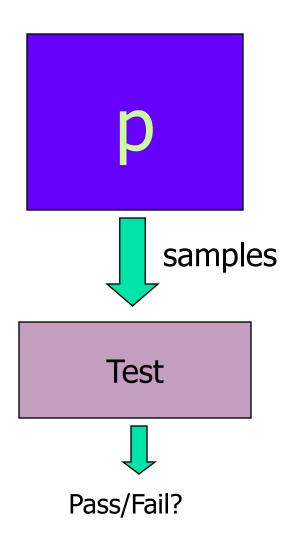
Model:



- *p* is arbitrary black-box distribution over [*n*], generates iid samples.
- samples $\mathbf{P}_i = \operatorname{Prob}[p \text{ outputs } i]$

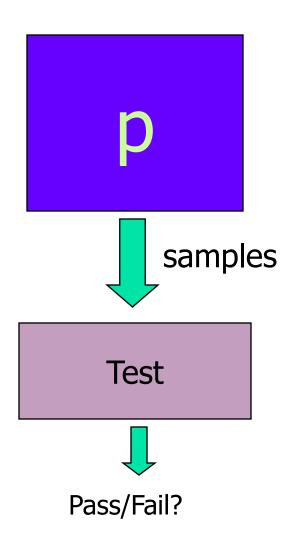
Sample complexity in terms of n?

Is p uniform?



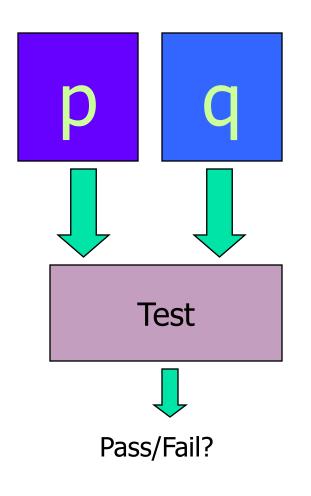
Theorem: ([Goldreich Ron][Batu Fortnow R. Smith White] [Paninski]) Sample complexity of distinguishing p=U from $|p-U|_1 > \varepsilon$ is $\theta(n^{1/2})$ Nearly test if p $|p-q|_1 = \Sigma |p_i-q_i|$ distribution Batu Fortnow Kumar R. White]: "Testing identity"

Is p uniform?



- Theorem: ([Goldreich Ron][Batu Fortnow R. Smith White] [Paninski]) Sample complexity of distinguishing p=Ufrom $|p-U|_1 > \varepsilon$ is $\theta(n^{1/2})$
- Nearly same complexity to test if p is any known distribution q [Batu Fischer Fortnow Kumar R. White]: "Testing identity"

Testing closeness



Theorem: ([BFRSW] [P. Valiant]) Sample complexity of distinguishing

p=qfrom $|p-q|_1 > \varepsilon$ is $\tilde{\theta}(n^{2/3})$

Approximating the distance between two distributions?

Distinguishing whether $|p-q|_1 < \varepsilon$ or $|p-q|_1$ is $\Theta(1)$ requires nearly linear samples [P. Valiant 08]

Some other properties (ignoring logs)

- Entropy estimation
 - $\theta(n^{1/\gamma^2})$ for γ -approx [BDKR, V,BS, GKV]
- Independence properties
 - Total independence of pairs [n]x[m]
 - O(n^{2/3}m^{1/3}) [BFFKRS]
 - K-wise independence of binary N-vector
 - O(N^k), Ω(N^{k/2}) [AAKMRX]
 - Almost k-wise independence
 - O(k log N), Ω(sqrt(k log N)) [AAKMRX]
- Monotonicity
 - $\theta(n^{1/2})$ for total order... [BKR],[BFRV]
- Support size
 - almost linear [RRSS]

Other properties to consider?

- Mixtures of k Gaussians
- "Junta"-distributions
- Clusterable-distributions
- Convex distributions
- Lipshitz" distributions
- Generated by a small Markovian process

Getting past the lower bounds

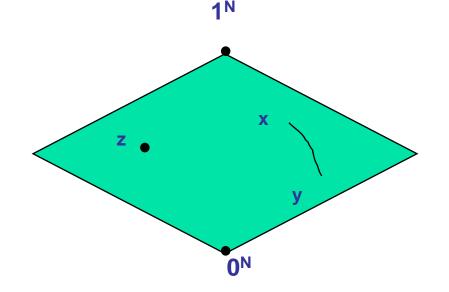
- Special distributions
 - e.g, uniform on a subset, monotone
- Other query models
 - Queries to probabilities of elements
- Other distance measures

Monotone distributions over totally ordered domains

- Big wins:
 - Test uniformity with O(1) samples [Batu Kumar R.]
 - Other tasks doable with polylogarithmic samples: [Batu Dasgupta Kumar R.][BKR]
 - Testing closeness
 - Testing independence
 - Estimating entropy
- Do these big wins carry over to partial orders?

Monotone high-dimensional distributions

- Domain: Boolean cube $\{0, 1\}^N$
- Are there testing algorithms with sample complexity polylogarithmic in domain size, i.e. poly(N)?



Testing Uniformity

- **Theorem** [R. Servedio][Adamaszek Czumaj Sohler]: There is an $O(N/\epsilon^2)$ sample complexity tester which given an unknown monotone distribution *p* over $\{0,1\}^N$ ([0,1]^N) satisfies (with probability 2/3):
 - If p=U, algorithm outputs "uniform"
 - If ||p U||₁ > ε, algorithm outputs "far from uniform"

Comment: Nearly best possible

Bad news for Boolean cube [R. Servedio]

- Technique for sample complexity lower bounds: monotone subcube decomposition
 - 2^{Ω(N)} lower bound for testing equivalence to a known distribution (even product distributions!)
 - $2^{\Omega(N)}$ lower bound for approximating entropy

Open question for Boolean cube

Can one test monotone distributions over {0,1}^N for any of the following properties

- equivalence to a known distribution
- approximating entropy
- independence

with fewer samples than for arbitrary distributions?

What about other partial orders?

Other query models:

- Distribution given explicitly [BDKR]
- Distribution given both by samples and oracle for p_i's [BDKR][RS]
 - Can estimate entropy in polylog(n) time

Other distance measures:

- Earth Mover Distance [Doba Nguyen² R.]
 - Measures min weight matching to some distribution with the property
 - Can estimate distance between distributions, independence over [0,1]^N, in time independent of domain size
 - Still exponential in N
 - Can improve for highly clusterable distributions

Conclusions and Future Directions

- Distribution property testing problems are everywhere
- Several useful techniques known
- Other properties for which sublinear tests exist?
- Special classes of distributions?
- Time vs. query complexity
- Other query models?
- Non-iid samples?

Thank you