
Sublinear Graph
Approximation Algorithms

Krzysztof Onak
MIT

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 1/32

Motivation

Want to learn a combinatorial parameter of a graph:

the maximum matching size

the independence number α(G),

the minimum vertex cover size,

the minimum dominating set size

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 2/32

Motivation

Want to learn a combinatorial parameter of a graph:

the maximum matching size

the independence number α(G),

the minimum vertex cover size,

the minimum dominating set size

Is there a way to compute/approximate it
without finding:

large matching,

large independent set,

small vertex cover,

small dominating set?

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 2/32

Motivation

Want to learn a combinatorial parameter of a graph:

the maximum matching size

the independence number α(G),

the minimum vertex cover size,

the minimum dominating set size

Is there a way to compute/approximate it
without finding:

large matching,

large independent set,

small vertex cover,

small dominating set?

The answer is YES in many cases

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 2/32

The Model

Bounded-degree graph G:

9

2 3

4

78

6

5
1

Query access to adjacency list of each node

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 3/32

Finding a Maximal

Independent Set Locally

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 4/32

Oracle for Maximal Independent Set
Construct oracle O:

O has query access to G = (V,E)

O provides query access to maximal independent set I ⊆ V

I is not a function of queries
it is a function of G and random bits

Oracle
Yes/No

v ∈ I?

Goal: Minimize the query processing time

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 5/32

Oracle for Maximal Independent Set
Construct oracle O:

O has query access to G = (V,E)

O provides query access to maximal independent set I ⊆ V

I is not a function of queries
it is a function of G and random bits

Oracle
Yes/No

v ∈ I?

Goal: Minimize the query processing time

One solution: Luby’s maximal independent set algorithm (1986)
simulated locally [Marko, Ron 2007]

Here: a method better for sublinear algorithms

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 5/32

Our Method
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 6/32

Our Method
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

?

To check if v ∈ I
recursively check if neighbors w s.t. r(w) < r(v) are in I
v ∈ I ⇐⇒ none of them in I

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 6/32

Our Method
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36

?

To check if v ∈ I
recursively check if neighbors w s.t. r(w) < r(v) are in I
v ∈ I ⇐⇒ none of them in I

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 6/32

Our Method
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36 .11

?

?

To check if v ∈ I
recursively check if neighbors w s.t. r(w) < r(v) are in I
v ∈ I ⇐⇒ none of them in I

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 6/32

Our Method
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36 .11

?

?

?

To check if v ∈ I
recursively check if neighbors w s.t. r(w) < r(v) are in I
v ∈ I ⇐⇒ none of them in I

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 6/32

Our Method
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36 .11

?

?

To check if v ∈ I
recursively check if neighbors w s.t. r(w) < r(v) are in I
v ∈ I ⇐⇒ none of them in I

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 6/32

Our Method
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36 .11

?

To check if v ∈ I
recursively check if neighbors w s.t. r(w) < r(v) are in I
v ∈ I ⇐⇒ none of them in I

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 6/32

Our Method
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36 .11

?
?

To check if v ∈ I
recursively check if neighbors w s.t. r(w) < r(v) are in I
v ∈ I ⇐⇒ none of them in I

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 6/32

Our Method
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36 .11

?

To check if v ∈ I
recursively check if neighbors w s.t. r(w) < r(v) are in I
v ∈ I ⇐⇒ none of them in I

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 6/32

Our Method
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36 .11

.22

?

?

To check if v ∈ I
recursively check if neighbors w s.t. r(w) < r(v) are in I
v ∈ I ⇐⇒ none of them in I

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 6/32

Our Method
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36 .11

.22

.27

?

??

To check if v ∈ I
recursively check if neighbors w s.t. r(w) < r(v) are in I
v ∈ I ⇐⇒ none of them in I

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 6/32

Our Method
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36 .11

.22

.27

?

?

To check if v ∈ I
recursively check if neighbors w s.t. r(w) < r(v) are in I
v ∈ I ⇐⇒ none of them in I

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 6/32

Our Method
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36 .11

.22

.27

?

To check if v ∈ I
recursively check if neighbors w s.t. r(w) < r(v) are in I
v ∈ I ⇐⇒ none of them in I

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 6/32

Our Method
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36 .11

.22

.27

To check if v ∈ I
recursively check if neighbors w s.t. r(w) < r(v) are in I
v ∈ I ⇐⇒ none of them in I

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 6/32

Our Method
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36 .11

.22

.27

To check if v ∈ I
recursively check if neighbors w s.t. r(w) < r(v) are in I
v ∈ I ⇐⇒ none of them in I

E[#visited vertices] and query complexity of order 2O(d)

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 6/32

Improvement for Random Query
Yoshida, Yamamoto, Ito (STOC 2009)

Heuristic:

Consider neighbors w of v in ascending order of r(w)

Once you find w ∈ I, v 6∈ I
(i.e., don’t check other neighbors)

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 7/32

Improvement for Random Query
Yoshida, Yamamoto, Ito (STOC 2009)

Heuristic:

Consider neighbors w of v in ascending order of r(w)

Once you find w ∈ I, v 6∈ I
(i.e., don’t check other neighbors)

They show:

E permutations, start vertex [#recursive calls] ≤ 1 +
m

n

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 7/32

Improvement for Random Query
Yoshida, Yamamoto, Ito (STOC 2009)

Heuristic:

Consider neighbors w of v in ascending order of r(w)

Once you find w ∈ I, v 6∈ I
(i.e., don’t check other neighbors)

They show:

E permutations, start vertex [#recursive calls] ≤ 1 +
m

n

Which gives:

expected query complexity for random vertex = O(d2)

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 7/32

Simplest Application:

Vertex Cover

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 8/32

Vertex Cover

Graph G = (V,E)

Goal: find smallest set S of nodes such that each edge has
endpoint in S

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 9/32

Vertex Cover

Graph G = (V,E)

Goal: find smallest set S of nodes such that each edge has
endpoint in S

Classical 2-approximation algorithm [Gavril]:

Greedily find a maximal matching M

Output the set of nodes matched in M

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 9/32

Vertex Cover

Graph G = (V,E)

Goal: find smallest set S of nodes such that each edge has
endpoint in S

Classical 2-approximation algorithm [Gavril]:

Greedily find a maximal matching M

Output the set of nodes matched in M

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 9/32

Vertex Cover

Graph G = (V,E)

Goal: find smallest set S of nodes such that each edge has
endpoint in S

Classical 2-approximation algorithm [Gavril]:

Greedily find a maximal matching M

Output the set of nodes matched in M

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 9/32

Sublinear-Time Algorithm

Idea of Parnas and Ron (2007):

construct oracle O that answers queries: Is e ∈ E in M?
for a fixed maximal matching M

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 10/32

Sublinear-Time Algorithm

Idea of Parnas and Ron (2007):

construct oracle O that answers queries: Is e ∈ E in M?
for a fixed maximal matching M

approximate the number of vertices matched in M up to

±ǫn by checking for O(1/ǫ2) vertices if they are matched

#queries to O = (#tested nodes) · (max-degree) = O(d/ǫ2)

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 10/32

Sublinear-Time Algorithm

Idea of Parnas and Ron (2007):

construct oracle O that answers queries: Is e ∈ E in M?
for a fixed maximal matching M

approximate the number of vertices matched in M up to

±ǫn by checking for O(1/ǫ2) vertices if they are matched

#queries to O = (#tested nodes) · (max-degree) = O(d/ǫ2)

Approximation notion:
Y is an (α, β)-approximation to X if X ≤ Y ≤ α · X + β

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 10/32

Sublinear-Time Algorithm

Idea of Parnas and Ron (2007):

construct oracle O that answers queries: Is e ∈ E in M?
for a fixed maximal matching M

approximate the number of vertices matched in M up to

±ǫn by checking for O(1/ǫ2) vertices if they are matched

#queries to O = (#tested nodes) · (max-degree) = O(d/ǫ2)

Approximation notion:
Y is an (α, β)-approximation to X if X ≤ Y ≤ α · X + β

(2, ǫn)-approximation:
Simulate O using our method

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 10/32

Query Complexity

Parnas, Ron (2007):

oracles via simulation of local distributed algorithms

used Kuhn, Moscibroda, Wattenhofer (2006)

∀c > 2, (c, ǫn)-approximation with dO(log(d))/ǫ2 queries

(2, ǫn)-approximation with dO(log(d)/ǫ3) queries

t communication rounds ⇒ dO(t) queries

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 11/32

Query Complexity

Parnas, Ron (2007):

oracles via simulation of local distributed algorithms

used Kuhn, Moscibroda, Wattenhofer (2006)

∀c > 2, (c, ǫn)-approximation with dO(log(d))/ǫ2 queries

(2, ǫn)-approximation with dO(log(d)/ǫ3) queries

Marko, Ron (2007) using Luby’s algorithm:

(2, ǫn)-approximation with dO(log(d/ǫ)) queries

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 11/32

Query Complexity

Parnas, Ron (2007):

oracles via simulation of local distributed algorithms

used Kuhn, Moscibroda, Wattenhofer (2006)

∀c > 2, (c, ǫn)-approximation with dO(log(d))/ǫ2 queries

(2, ǫn)-approximation with dO(log(d)/ǫ3) queries

Marko, Ron (2007) using Luby’s algorithm:

(2, ǫn)-approximation with dO(log(d/ǫ)) queries

Nguyen, O. (2008):

(2, ǫn)-approximation with 2O(d)/ǫ2 queries

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 11/32

Query Complexity

Parnas, Ron (2007):

oracles via simulation of local distributed algorithms

used Kuhn, Moscibroda, Wattenhofer (2006)

∀c > 2, (c, ǫn)-approximation with dO(log(d))/ǫ2 queries

(2, ǫn)-approximation with dO(log(d)/ǫ3) queries

Marko, Ron (2007) using Luby’s algorithm:

(2, ǫn)-approximation with dO(log(d/ǫ)) queries

Nguyen, O. (2008):

(2, ǫn)-approximation with 2O(d)/ǫ2 queries

Yoshida, Yamamoto, Ito (2009) using our suggestion:

(2, ǫn)-approximation with O(d3/ǫ2) queries

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 11/32

Lower Bounds

Trevisan 2007:

(c, ǫn)-approximation requires Ω(
√

n) queries for c < 2

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 12/32

Lower Bounds

Trevisan 2007:

(c, ǫn)-approximation requires Ω(
√

n) queries for c < 2

Parnas, Ron 2007:

(O(1), ǫn)-approximation requires Ω(d) queries

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 12/32

Other Problems

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 13/32

Maximum Matching Size
(1, ǫn)-approximation for maximum matching size

Construct an oracle for a matching with no augmenting
paths of length Θ(1/ǫ)

Can be achieved by a sequence of oracles, where each
oracle improves the matching from the previous oracle

Each improvement corresponds to a maximal set of
augmenting paths

no

paths

of length≤ 1

no

paths

of length≤ 7

approximationsampling

no

paths

of length≤ 3

no

paths

of length≤ 5

Oracle O1:

augmenting augmenting augmenting augmenting

Oracle O2: Oracle O3: Oracle O4:

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 14/32

Maximum Matching Size
(1, ǫn)-approximation for maximum matching size

Construct an oracle for a matching with no augmenting
paths of length Θ(1/ǫ)

Can be achieved by a sequence of oracles, where each
oracle improves the matching from the previous oracle

Each improvement corresponds to a maximal set of
augmenting paths

no

paths

of length≤ 1

no

paths

of length≤ 7

approximationsampling

no

paths

of length≤ 3

no

paths

of length≤ 5

Oracle O1:

augmenting augmenting augmenting augmenting

Oracle O2: Oracle O3: Oracle O4:

Query complexity and running time:

Our analysis: 2dO(1/ǫ)

Yoshida, Yamamoto, Ito (2009): dO(1/ǫ2)

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 14/32

Set Cover and Dominating Set

Set Cover:
Assumption:

each element in at most t = O(1) of n sets
each set has at most s = O(1) elements

Guarantee: (1 + ln s, ǫn)-approximation

How: use classical greedy algorithm

Complexity: function of s, t, and ǫ

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 15/32

Set Cover and Dominating Set

Set Cover:
Assumption:

each element in at most t = O(1) of n sets
each set has at most s = O(1) elements

Guarantee: (1 + ln s, ǫn)-approximation

How: use classical greedy algorithm

Complexity: function of s, t, and ǫ

Dominating Set:

(1 + ln(d + 1), ǫn)-approximation in time function(d, ǫ)

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 15/32

Set Cover and Dominating Set

Set Cover:
Assumption:

each element in at most t = O(1) of n sets
each set has at most s = O(1) elements

Guarantee: (1 + ln s, ǫn)-approximation

How: use classical greedy algorithm

Complexity: function of s, t, and ǫ

Dominating Set:

(1 + ln(d + 1), ǫn)-approximation in time function(d, ǫ)

(O(log d), ǫn)-approximation known before via Parnas,
Ron (2007) + Kuhn, Moscibroda, Wattenhofer (2006)

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 15/32

Set Cover and Dominating Set

Set Cover:
Assumption:

each element in at most t = O(1) of n sets
each set has at most s = O(1) elements

Guarantee: (1 + ln s, ǫn)-approximation

How: use classical greedy algorithm

Complexity: function of s, t, and ǫ

Dominating Set:

(1 + ln(d + 1), ǫn)-approximation in time function(d, ǫ)

(O(log d), ǫn)-approximation known before via Parnas,
Ron (2007) + Kuhn, Moscibroda, Wattenhofer (2006)

Alon: Ω(log n) queries to (o(log d), ǫn)-approximate

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 15/32

Maximum Matching

Maximum Weight Matching:

Assumption: degree d and all weights in [0,1]

Guarantee: (1, ǫn)-approximation

How: use Pettie and Sanders (2004)

Complexity: function of d and ǫ

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 16/32

Maximum Matching

Maximum Weight Matching:

Assumption: degree d and all weights in [0,1]

Guarantee: (1, ǫn)-approximation

How: use Pettie and Sanders (2004)

Complexity: function of d and ǫ

Maximum Independent Set (Alon):

Upper bound:
(

O
(

d·log log d
log d

)

, ǫn
)

-approximation in time function(d, ǫ)

Lower bound:

Ω(log n) queries to
(

o
(

d
log d

)

, ǫn
)

-approximate

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 16/32

Local Graph Partitions
[Hassidim, Kelner, Nguyen, O. 2009]

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 17/32

Hyperfinite Graphs

(ǫ, δ)-partition

(All graphs of degree O(1))

(ǫ, δ)-hyperfinite graphs: can remove ǫ|V | edges and get
components of size at most δ

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 18/32

Hyperfinite Graphs

(ǫ, δ)-partition

(All graphs of degree O(1))

(ǫ, δ)-hyperfinite graphs: can remove ǫ|V | edges and get
components of size at most δ

hyperfinite family of graphs: there is ρ such that all
graphs are (ǫ, ρ(ǫ))-hyperfinite for all ǫ > 0

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 18/32

Taxonomy

Subexponential

Minor−Free Graphs

Hyperfinite Graphs

Growth

Polynomial
Growth

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 19/32

Using a Partition

If someone gave us a (ǫ/2, δ)-partition:

Algorithm

Sample O(1/ǫ2) vertices

Compute minimum vertex cover for the sampled
components

Return the fraction of the sampled vertices in the covers

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 20/32

Using a Partition

If someone gave us a (ǫ/2, δ)-partition:

Algorithm

Sample O(1/ǫ2) vertices

Compute minimum vertex cover for the sampled
components

Return the fraction of the sampled vertices in the covers

This gives ±ǫ approximation to VC(G)/n in constant time:

Cut edges change VC(G) by at most ǫn/2

Can compute vertex cover separately for each
component

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 20/32

Using a Partition

If someone gave us a (ǫ/2, δ)-partition:

Algorithm

Bad news:

We don’t have a partition

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 21/32

Using a Partition

If someone gave us a (ǫ/2, δ)-partition:

Algorithm

Bad news:

We don’t have a partition

Good news:

We can compute it ourselves
without looking at the entire graph

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 21/32

Using a Partition

AlgorithmPartitioning

Oracle

Bad news:

We don’t have a partition

Good news:

We can compute it ourselves
without looking at the entire graph

New Tool: Partitioning Oracles

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 21/32

Partitioning Oracle

Oracle
vertex v

P (v)

C = fixed hyperfinite class

oracle has query access to G = (V,E)
(G need not be in C)

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 22/32

Partitioning Oracle

Oracle
vertex v

P (v)

C = fixed hyperfinite class

oracle has query access to G = (V,E)
(G need not be in C)

oracle provides query access to partition P of V ;
for each v, oracle returns P (v) ⊆ V s.t. v ∈ P (v)

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 22/32

Partitioning Oracle

Oracle
vertex v

P (v)

C = fixed hyperfinite class

oracle has query access to G = (V,E)
(G need not be in C)

oracle provides query access to partition P of V ;
for each v, oracle returns P (v) ⊆ V s.t. v ∈ P (v)

Properties of P :

each |P (v)| = O(1)

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 22/32

Partitioning Oracle

Oracle
vertex v

P (v)

C = fixed hyperfinite class

oracle has query access to G = (V,E)
(G need not be in C)

oracle provides query access to partition P of V ;
for each v, oracle returns P (v) ⊆ V s.t. v ∈ P (v)

Properties of P :

each |P (v)| = O(1)

If G ∈ C, number of cut edges ≤ ǫn w.p. 99
100

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 22/32

Partitioning Oracle

Oracle
vertex v

P (v)

C = fixed hyperfinite class

oracle has query access to G = (V,E)
(G need not be in C)

oracle provides query access to partition P of V ;
for each v, oracle returns P (v) ⊆ V s.t. v ∈ P (v)

Properties of P :

each |P (v)| = O(1)

If G ∈ C, number of cut edges ≤ ǫn w.p. 99
100

partition P (·) is not a function of queries,
it is a function of graph structure and random bits

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 22/32

Our Oracles
Generic oracle for any hyperfinite class of graphs

Query complexity: 2dO(ρ(ǫ3/54000))

Via local simulation of a greedy partitioning
procedure (uses [Nguyen, O. 2008])

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 23/32

Our Oracles
Generic oracle for any hyperfinite class of graphs

Query complexity: 2dO(ρ(ǫ3/54000))

For minor-free graphs:

Query complexity: dpoly(1/ǫ)

Via techniques from distributed algorithms
[Czygrinow, Hańćkowiak, Wawrzyniak 2008]

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 23/32

Our Oracles
Generic oracle for any hyperfinite class of graphs

Query complexity: 2dO(ρ(ǫ3/54000))

For minor-free graphs:

Query complexity: dpoly(1/ǫ)

For ρ(ǫ) ≤ poly(1/ǫ):

Query complexity: 2poly(d/ǫ)

Via methods from distributed algorithms and
partitioning methods of Andersen and Peres (2009)

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 23/32

Our Oracles
Generic oracle for any hyperfinite class of graphs

Query complexity: 2dO(ρ(ǫ3/54000))

For minor-free graphs:

Query complexity: dpoly(1/ǫ)

For ρ(ǫ) ≤ poly(1/ǫ):

Query complexity: 2poly(d/ǫ)

Time complexity?

Q = query complexity

k = number of queries

Running time = O(kQ · log(kQ))

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 23/32

Three Applications

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 24/32

Three Applications

1. Approximation of graph parameters
in hyperfinite graphs

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 25/32

Three Applications

1. Approximation of graph parameters
in hyperfinite graphs

2. Testing minor-closed properties

Simpler proof of the result of Benjamini,
Schramm, and Shapira (2008)

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 25/32

Three Applications

1. Approximation of graph parameters
in hyperfinite graphs

2. Testing minor-closed properties

Simpler proof of the result of Benjamini,
Schramm, and Shapira (2008)

3. Approximating distance to hereditary properties
in hyperfinite graphs

Earlier only known to be testable
[Czumaj, Shapira, Sohler 2009]

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 25/32

Application 1: Approximation

For hyperfinite graphs, can get ±ǫn approximation to:

minimum vertex cover size
(that is also the independence number)

minimum dominating set size

in time independent of the graph size

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 26/32

Application 1: Approximation

For hyperfinite graphs, can get ±ǫn approximation to:

minimum vertex cover size
(that is also the independence number)

minimum dominating set size

in time independent of the graph size

Earlier/independent proofs of the same results

Elek 2009: for graphs with subexponential growth

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 26/32

Application 1: Approximation

For hyperfinite graphs, can get ±ǫn approximation to:

minimum vertex cover size
(that is also the independence number)

minimum dominating set size

in time independent of the graph size

Earlier/independent proofs of the same results

Elek 2009: for graphs with subexponential growth

Czygrinow, Hańćkowiak, Wawrzyniak (2008)
+ Parnas, Ron (2007): for minor-free graphs

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 26/32

Application 2: Testing

Testing H-minor-freeness in the sparse graph model
of Goldreich and Ron (1997)

Input: query access to constant degree graph G
& parameter ǫ > 0

Goal: w.p. 2/3
accept H-minor-free graphs
reject graphs far from H-minor-freeness: ≥ ǫn edges
must be removed to achieve H-minor-freeness

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 27/32

Application 2: Testing

Testing H-minor-freeness in the sparse graph model
of Goldreich and Ron (1997)

Input: query access to constant degree graph G
& parameter ǫ > 0

Goal: w.p. 2/3
accept H-minor-free graphs
reject graphs far from H-minor-freeness: ≥ ǫn edges
must be removed to achieve H-minor-freeness

Time and query complexity:

Goldreich, Ron (1997): cycle-freeness in poly(1/ǫ) time

Benjamini, Schramm, Shapira (2008): any minor in 222poly(1/ǫ)

time

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 27/32

Application 2: Testing

Testing H-minor-freeness in the sparse graph model
of Goldreich and Ron (1997)

Input: query access to constant degree graph G
& parameter ǫ > 0

Goal: w.p. 2/3
accept H-minor-free graphs
reject graphs far from H-minor-freeness: ≥ ǫn edges
must be removed to achieve H-minor-freeness

Time and query complexity:

Goldreich, Ron (1997): cycle-freeness in poly(1/ǫ) time

Benjamini, Schramm, Shapira (2008): any minor in 222poly(1/ǫ)

time

This work: 2poly(1/ǫ) and simpler proof

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 27/32

Application 2: Testing

Example: Testing planarity
(i.e., K5- and K3,3-minor-freeness)

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 28/32

Application 2: Testing

Example: Testing planarity
(i.e., K5- and K3,3-minor-freeness)

Algorithm (given partitioning oracle for planar graphs
that usually cuts ≤ ǫn/2 edges):

Estimate the number of cut edges by sampling

If greater than ǫn/2, reject

Check a few random components if planar

If any non-planar found, reject
otherwise, accept

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 28/32

Application 2: Testing

Example: Testing planarity
(i.e., K5- and K3,3-minor-freeness)

Algorithm (given partitioning oracle for planar graphs
that usually cuts ≤ ǫn/2 edges):

Estimate the number of cut edges by sampling

If greater than ǫn/2, reject

Check a few random components if planar

If any non-planar found, reject
otherwise, accept

Why it works:

planar: few edges cut in the partition

ǫ-far: either many edges cut
or many copies of K3,3 or K5

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 28/32

Simplest Oracle

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 29/32

Iterative Procedure

Global procedure:

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 30/32

Iterative Procedure

Global procedure:

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 30/32

Iterative Procedure

Global procedure:

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 30/32

Iterative Procedure

Global procedure:

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 30/32

Iterative Procedure

Global procedure:

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 30/32

Iterative Procedure

Global procedure:

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 30/32

Iterative Procedure

Global procedure:

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 30/32

Iterative Procedure

Global procedure:

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 30/32

Iterative Procedure

Global procedure:

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 30/32

Local simulation

Use technique of Nguyen and O. (2008):

Random numbers assigned to vertices generate a
random permutation

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 31/32

Local simulation

Use technique of Nguyen and O. (2008):

Random numbers assigned to vertices generate a
random permutation

To find a component of v:

recursively check what happened for close vertices
with lower numbers

if v still in graph, try to construct a component

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 31/32

Open Problems

Tight bounds for vertex cover and maximum matching

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 32/32

Open Problems

Tight bounds for vertex cover and maximum matching

Is there a poly(1/ǫ)-time/query partitioning oracle for
minor-free graphs?

This would give a polynomial time/query tester for
minor-freeness, and resolve an open question of
Benjamini, Schramm, Shapira (2008)

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 32/32

Open Problems

Tight bounds for vertex cover and maximum matching

Is there a poly(1/ǫ)-time/query partitioning oracle for
minor-free graphs?

This would give a polynomial time/query tester for
minor-freeness, and resolve an open question of
Benjamini, Schramm, Shapira (2008)

Good approximation algorithms for other popular
classes of graphs

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 32/32

	Motivation
	Motivation
	Motivation

	The Model
	Oracle for Maximal Independent Set
	Oracle for Maximal Independent Set

	Our Method
	Our Method
	Our Method
	Our Method
	Our Method
	Our Method
	Our Method
	Our Method
	Our Method
	Our Method
	Our Method
	Our Method
	Our Method
	Our Method
	Our Method

	Improvement for Random Query
	Improvement for Random Query
	Improvement for Random Query

	Vertex Cover
	Vertex Cover
	Vertex Cover
	Vertex Cover

	Sublinear-Time Algorithm
	Sublinear-Time Algorithm
	Sublinear-Time Algorithm
	Sublinear-Time Algorithm

	Query Complexity
	Query Complexity
	Query Complexity
	Query Complexity

	Lower Bounds
	Lower Bounds

	Maximum Matching Size
	Maximum Matching Size

	Set Cover and Dominating Set
	Set Cover and Dominating Set
	Set Cover and Dominating Set
	Set Cover and Dominating Set

	Maximum Matching
	Maximum Matching

	Hyperfinite Graphs
	Hyperfinite Graphs

	Taxonomy
	Using a Partition
	Using a Partition

	Using a Partition
	Using a Partition
	Using a Partition

	Partitioning Oracle
	Partitioning Oracle
	Partitioning Oracle
	Partitioning Oracle
	Partitioning Oracle

	Our Oracles
	Our Oracles
	Our Oracles
	Our Oracles

	Three Applications
	Three Applications
	Three Applications

	Application 1: Approximation
	Application 1: Approximation
	Application 1: Approximation

	Application 2: Testing
	Application 2: Testing
	Application 2: Testing

	Application 2: Testing
	Application 2: Testing
	Application 2: Testing

	Iterative Procedure
	Iterative Procedure
	Iterative Procedure
	Iterative Procedure
	Iterative Procedure
	Iterative Procedure
	Iterative Procedure
	Iterative Procedure
	Iterative Procedure

	Local simulation
	Local simulation

	Open Problems
	Open Problems
	Open Problems

