# **Sublinear Graph Approximation Algorithms**

### Krzysztof Onak MIT

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 1/32

# Motivation

Want to learn a combinatorial parameter of a graph:

- the maximum matching size
- the independence number  $\alpha(G)$ ,
- the minimum vertex cover size,
- the minimum dominating set size

# Motivation

Want to learn a combinatorial parameter of a graph:

- the maximum matching size
- the independence number  $\alpha(G)$ ,
- the minimum vertex cover size,
- the minimum dominating set size
- Is there a way to compute/approximate it without finding:
  - large matching,
  - large independent set,
  - small vertex cover,
  - small dominating set?

# Motivation

Want to learn a combinatorial parameter of a graph:

- the maximum matching size
- the independence number  $\alpha(G)$ ,
- the minimum vertex cover size,
- the minimum dominating set size
- Is there a way to compute/approximate it without finding:
  - large matching,
  - large independent set,
  - small vertex cover,
  - small dominating set?
- The answer is YES in many cases

### **The Model**



Query access to adjacency list of each node

Krzysztof Onak – *Sublinear Graph Approximation Algorithms* – p. 3/32

Finding a Maximal Independent Set Locally

# **Oracle for Maximal Independent Set**

Construct oracle  $\mathcal{O}$ :

- $\mathcal{O}$  has query access to G = (V, E)
- $\mathcal{O}$  provides query access to maximal independent set  $\mathcal{I} \subseteq V$
- $\mathcal{I}$  is not a function of queries it is a function of G and random bits



Goal: Minimize the query processing time

# **Oracle for Maximal Independent Set**

Construct oracle  $\mathcal{O}$ :

- $\mathcal{O}$  has query access to G = (V, E)
- ${} \slash {\mathcal O}$  provides query access to maximal independent set  ${\mathcal I} \subseteq V$



Goal: Minimize the query processing time

One solution: Luby's maximal independent set algorithm (1986) simulated locally [Marko, Ron 2007]

Here: a method better for sublinear algorithms

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 5/32

#### Main idea:

- select maximal independent set greedily
- consider vertices in random order

Random order  $\equiv$  random numbers r(v) assigned to each vertex



#### Main idea:

- select maximal independent set greedily
- consider vertices in random order

Random order  $\equiv$  random numbers r(v) assigned to each vertex



- ▶ recursively check if neighbors w s.t. r(w) < r(v) are in  $\mathcal{I}$
- $v \in \mathcal{I} \iff$  none of them in  $\mathcal{I}$

#### Main idea:

- select maximal independent set greedily
- consider vertices in random order

Random order  $\equiv$  random numbers r(v) assigned to each vertex



- ▶ recursively check if neighbors w s.t. r(w) < r(v) are in  $\mathcal{I}$
- $v \in \mathcal{I} \iff$  none of them in  $\mathcal{I}$

#### Main idea:

- select maximal independent set greedily
- consider vertices in random order

Random order  $\equiv$  random numbers r(v) assigned to each vertex



- recursively check if neighbors w s.t. r(w) < r(v) are in  $\mathcal{I}$
- $v \in \mathcal{I} \iff$  none of them in  $\mathcal{I}$

#### Main idea:

- select maximal independent set greedily
- consider vertices in random order

Random order  $\equiv$  random numbers r(v) assigned to each vertex



- recursively check if neighbors w s.t. r(w) < r(v) are in  $\mathcal{I}$
- $v \in \mathcal{I} \iff$  none of them in  $\mathcal{I}$

#### Main idea:

- select maximal independent set greedily
- consider vertices in random order

Random order  $\equiv$  random numbers r(v) assigned to each vertex



- recursively check if neighbors w s.t. r(w) < r(v) are in  $\mathcal{I}$
- $v \in \mathcal{I} \iff$  none of them in  $\mathcal{I}$

#### Main idea:

- select maximal independent set greedily
- consider vertices in random order

Random order  $\equiv$  random numbers r(v) assigned to each vertex



- ▶ recursively check if neighbors w s.t. r(w) < r(v) are in  $\mathcal{I}$
- $v \in \mathcal{I} \iff$  none of them in  $\mathcal{I}$

#### Main idea:

- select maximal independent set greedily
- consider vertices in random order

Random order  $\equiv$  random numbers r(v) assigned to each vertex



- recursively check if neighbors w s.t. r(w) < r(v) are in  $\mathcal{I}$
- $v \in \mathcal{I} \iff$  none of them in  $\mathcal{I}$

#### Main idea:

- select maximal independent set greedily
- consider vertices in random order

Random order  $\equiv$  random numbers r(v) assigned to each vertex



- recursively check if neighbors w s.t. r(w) < r(v) are in  $\mathcal{I}$
- $v \in \mathcal{I} \iff$  none of them in  $\mathcal{I}$

#### Main idea:

- select maximal independent set greedily
- consider vertices in random order

Random order  $\equiv$  random numbers r(v) assigned to each vertex



- ▶ recursively check if neighbors w s.t. r(w) < r(v) are in  $\mathcal{I}$
- $v \in \mathcal{I} \iff$  none of them in  $\mathcal{I}$

#### Main idea:

- select maximal independent set greedily
- consider vertices in random order

Random order  $\equiv$  random numbers r(v) assigned to each vertex



- recursively check if neighbors w s.t. r(w) < r(v) are in  $\mathcal{I}$
- $v \in \mathcal{I} \iff$  none of them in  $\mathcal{I}$

#### Main idea:

- select maximal independent set greedily
- consider vertices in random order

Random order  $\equiv$  random numbers r(v) assigned to each vertex



- recursively check if neighbors w s.t. r(w) < r(v) are in  $\mathcal{I}$
- $v \in \mathcal{I} \iff$  none of them in  $\mathcal{I}$

#### Main idea:

- select maximal independent set greedily
- consider vertices in random order

Random order  $\equiv$  random numbers r(v) assigned to each vertex



- recursively check if neighbors w s.t. r(w) < r(v) are in  $\mathcal{I}$
- $v \in \mathcal{I} \iff$  none of them in  $\mathcal{I}$

#### Main idea:

- select maximal independent set greedily
- consider vertices in random order

Random order  $\equiv$  random numbers r(v) assigned to each vertex



- recursively check if neighbors w s.t. r(w) < r(v) are in  $\mathcal{I}$
- $v \in \mathcal{I} \iff$  none of them in  $\mathcal{I}$

#### Main idea:

- select maximal independent set greedily
- consider vertices in random order

Random order  $\equiv$  random numbers r(v) assigned to each vertex



To check if  $v \in \mathcal{I}$ 

- recursively check if neighbors w s.t. r(w) < r(v) are in  $\mathcal{I}$
- $v \in \mathcal{I} \iff$  none of them in  $\mathcal{I}$

E[#visited vertices] and query complexity of order  $2^{O(d)}$ 

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 6/32

### **Improvement for Random Query** Yoshida, Yamamoto, Ito (STOC 2009) Heuristic:

- Consider neighbors w of v in ascending order of r(w)
- Once you find  $w \in \mathcal{I}, v \notin \mathcal{I}$ (i.e., don't check other neighbors)

# Improvement for Random Query Yoshida, Yamamoto, Ito (STOC 2009)

Heuristic:

- Consider neighbors w of v in ascending order of r(w)
- Once you find  $w \in \mathcal{I}, v \notin \mathcal{I}$  (i.e., don't check other neighbors)

#### They show:

 $E_{\text{permutations, start vertex}} [\text{#recursive calls}] \le 1 + \frac{m}{n}$ 

# Improvement for Random Query Yoshida, Yamamoto, Ito (STOC 2009)

Heuristic:

- Consider neighbors w of v in ascending order of r(w)
- Once you find  $w \in \mathcal{I}, v \notin \mathcal{I}$  (i.e., don't check other neighbors)

#### They show:

 $E_{\text{permutations, start vertex}} [\text{#recursive calls}] \le 1 + \frac{m}{n}$ 

#### Which gives:

expected query complexity for random vertex =  $O(d^2)$ 

# Simplest Application: Vertex Cover

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 8/32

Graph G = (V, E)

**Goal:** find smallest set S of nodes such that each edge has endpoint in S



Graph G = (V, E)

Goal: find smallest set S of nodes such that each edge has endpoint in S

Classical 2-approximation algorithm [Gavril]:

- $\checkmark$  Greedily find a maximal matching M
- Output the set of nodes matched in M



Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 9/32

Graph G = (V, E)

Goal: find smallest set S of nodes such that each edge has endpoint in S

Classical 2-approximation algorithm [Gavril]:

- Greedily find a maximal matching M
- Output the set of nodes matched in M



Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 9/32

Graph G = (V, E)

Goal: find smallest set S of nodes such that each edge has endpoint in S

Classical 2-approximation algorithm [Gavril]:

- $\checkmark$  Greedily find a maximal matching M
- Output the set of nodes matched in M



Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 9/32

Idea of Parnas and Ron (2007):

■ construct oracle  $\mathcal{O}$  that answers queries: Is  $e \in E$  in M?
 for a fixed maximal matching M

Idea of Parnas and Ron (2007):

- construct oracle  $\mathcal{O}$  that answers queries: Is  $e \in E$  in M?
  for a fixed maximal matching M
- approximate the number of vertices matched in M up to  $\pm \epsilon n \text{ by checking for } O(1/\epsilon^2) \text{ vertices if they are matched}$

#queries to  $\mathcal{O} = (\text{#tested nodes}) \cdot (\text{max-degree}) = O(d/\epsilon^2)$ 

Idea of Parnas and Ron (2007):

- construct oracle  $\mathcal{O}$  that answers queries: Is  $e \in E$  in M?
  for a fixed maximal matching M
- approximate the number of vertices matched in M up to  $\pm \epsilon n$  by checking for  $O(1/\epsilon^2)$  vertices if they are matched

#queries to  $\mathcal{O} = (\text{#tested nodes}) \cdot (\text{max-degree}) = O(d/\epsilon^2)$ 

Approximation notion:

*Y* is an  $(\alpha, \beta)$ -approximation to *X* if  $X \leq Y \leq \alpha \cdot X + \beta$ 

Idea of Parnas and Ron (2007):

- construct oracle  $\mathcal{O}$  that answers queries: Is  $e \in E$  in M?
  for a fixed maximal matching M
- approximate the number of vertices matched in M up to  $\pm \epsilon n$  by checking for  $O(1/\epsilon^2)$  vertices if they are matched

#queries to  $\mathcal{O} = (\text{#tested nodes}) \cdot (\text{max-degree}) = O(d/\epsilon^2)$ 

**Approximation notion:** 

*Y* is an  $(\alpha, \beta)$ -approximation to *X* if  $X \leq Y \leq \alpha \cdot X + \beta$ 

 $(2, \epsilon n)$ -approximation: Simulate  $\mathcal{O}$  using our method

# **Query Complexity**

#### Parnas, Ron (2007):

- oracles via simulation of local distributed algorithms
- used Kuhn, Moscibroda, Wattenhofer (2006)
- $\forall c > 2$ ,  $(c, \epsilon n)$ -approximation with  $d^{O(\log(d))}/\epsilon^2$  queries
- $(2, \epsilon n)$ -approximation with  $d^{O(\log(d)/\epsilon^3)}$  queries

t communication rounds  $\Rightarrow d^{O(t)}$  queries
### **Query Complexity**

#### Parnas, Ron (2007):

- oracles via simulation of local distributed algorithms
- used Kuhn, Moscibroda, Wattenhofer (2006)
- $\forall c > 2$ ,  $(c, \epsilon n)$ -approximation with  $d^{O(\log(d))}/\epsilon^2$  queries
- $(2, \epsilon n)$ -approximation with  $d^{O(\log(d)/\epsilon^3)}$  queries

Marko, Ron (2007) using Luby's algorithm:

■  $(2, \epsilon n)$ -approximation with  $d^{O(\log(d/\epsilon))}$  queries

### **Query Complexity**

#### Parnas, Ron (2007):

- oracles via simulation of local distributed algorithms
- used Kuhn, Moscibroda, Wattenhofer (2006)
- $\forall c > 2$ ,  $(c, \epsilon n)$ -approximation with  $d^{O(\log(d))}/\epsilon^2$  queries
- $(2, \epsilon n)$ -approximation with  $d^{O(\log(d)/\epsilon^3)}$  queries

Marko, Ron (2007) using Luby's algorithm:

- $(2, \epsilon n)$ -approximation with  $d^{O(\log(d/\epsilon))}$  queries Nguyen, O. (2008):
- $(2, \epsilon n)$ -approximation with  $2^{O(d)}/\epsilon^2$  queries

### **Query Complexity**

#### Parnas, Ron (2007):

- oracles via simulation of local distributed algorithms
- used Kuhn, Moscibroda, Wattenhofer (2006)
- $\forall c > 2$ ,  $(c, \epsilon n)$ -approximation with  $d^{O(\log(d))}/\epsilon^2$  queries
- $(2, \epsilon n)$ -approximation with  $d^{O(\log(d)/\epsilon^3)}$  queries

Marko, Ron (2007) using Luby's algorithm:

- $(2, \epsilon n)$ -approximation with  $d^{O(\log(d/\epsilon))}$  queries Nguyen, O. (2008):
- $(2, \epsilon n)$ -approximation with  $2^{O(d)}/\epsilon^2$  queries

Yoshida, Yamamoto, Ito (2009) using our suggestion:

•  $(2, \epsilon n)$ -approximation with  $O(d^3/\epsilon^2)$  queries

#### **Lower Bounds**

Trevisan 2007:

•  $(c, \epsilon n)$ -approximation requires  $\Omega(\sqrt{n})$  queries for c < 2

#### **Lower Bounds**

#### Trevisan 2007:

•  $(c, \epsilon n)$ -approximation requires  $\Omega(\sqrt{n})$  queries for c < 2

#### Parnas, Ron 2007:

■  $(O(1), \epsilon n)$ -approximation requires  $\Omega(d)$  queries

## **Other Problems**

Krzysztof Onak – *Sublinear Graph Approximation Algorithms* – p. 13/32

### **Maximum Matching Size**

#### $(1, \epsilon n)$ -approximation for maximum matching size

- Construct an oracle for a matching with no augmenting paths of length  $\Theta(1/\epsilon)$
- Can be achieved by a sequence of oracles, where each oracle improves the matching from the previous oracle
- Each improvement corresponds to a maximal set of augmenting paths



### **Maximum Matching Size**

- $(1, \epsilon n)$ -approximation for maximum matching size
  - Construct an oracle for a matching with no augmenting paths of length  $\Theta(1/\epsilon)$
  - Can be achieved by a sequence of oracles, where each oracle improves the matching from the previous oracle
  - Each improvement corresponds to a maximal set of augmenting paths



Query complexity and running time:

- Our analysis:  $2^{d^{O(1/\epsilon)}}$
- Yoshida, Yamamoto, Ito (2009):  $d^{O(1/\epsilon^2)}$

#### Set Cover:

- Assumption:
  - each element in at most t = O(1) of n sets
  - each set has at most s = O(1) elements
- **Guarantee:**  $(1 + \ln s, \epsilon n)$ -approximation
- How: use classical greedy algorithm
- **Solution Complexity:** function of s, t, and  $\epsilon$

#### Set Cover:

- Assumption:
  - each element in at most t = O(1) of n sets
  - each set has at most s = O(1) elements
- **Guarantee:**  $(1 + \ln s, \epsilon n)$ -approximation
- How: use classical greedy algorithm
- Complexity: function of s, t, and  $\epsilon$

#### **Dominating Set:**

•  $(1 + \ln(d+1), \epsilon n)$ -approximation in time function $(d, \epsilon)$ 

#### Set Cover:

- Assumption:
  - each element in at most t = O(1) of n sets
  - each set has at most s = O(1) elements
- **Guarantee:**  $(1 + \ln s, \epsilon n)$ -approximation
- How: use classical greedy algorithm
- Complexity: function of s, t, and  $\epsilon$

#### Dominating Set:

- $(1 + \ln(d+1), \epsilon n)$ -approximation in time function $(d, \epsilon)$
- $(O(\log d), \epsilon n)$ -approximation known before via Parnas, Ron (2007) + Kuhn, Moscibroda, Wattenhofer (2006)

#### Set Cover:

- Assumption:
  - each element in at most t = O(1) of n sets
  - each set has at most s = O(1) elements
- **Guarantee:**  $(1 + \ln s, \epsilon n)$ -approximation
- How: use classical greedy algorithm
- Complexity: function of s, t, and  $\epsilon$

#### Dominating Set:

- $(1 + \ln(d+1), \epsilon n)$ -approximation in time function $(d, \epsilon)$
- $(O(\log d), \epsilon n)$ -approximation known before via Parnas, Ron (2007) + Kuhn, Moscibroda, Wattenhofer (2006)
- Alon: Ω(log n) queries to (o(log d), εn)-approximate

#### **Maximum Matching**

- Maximum Weight Matching:
  - Assumption: degree d and all weights in [0,1]
  - Guarantee:  $(1, \epsilon n)$ -approximation
  - How: use Pettie and Sanders (2004)
  - Complexity: function of d and  $\epsilon$

#### **Maximum Matching**

- Maximum Weight Matching:
  - Assumption: degree d and all weights in [0,1]
  - Guarantee:  $(1, \epsilon n)$ -approximation
  - How: use Pettie and Sanders (2004)
  - Complexity: function of d and  $\epsilon$
- Maximum Independent Set (Alon):
  - Upper bound:

 $\left(O\left(\frac{d \cdot \log \log d}{\log d}\right), \epsilon n\right)$ -approximation in time function $(d, \epsilon)$ 

Lower bound:

 $\Omega(\log n)$  queries to  $\left(o\left(\frac{d}{\log d}\right), \epsilon n\right)$ -approximate

Local Graph Partitions [Hassidim, Kelner, Nguyen, O. 2009]

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 17/32

### **Hyperfinite Graphs**



• ( $\epsilon, \delta$ )-hyperfinite graphs: can remove  $\epsilon |V|$  edges and get components of size at most  $\delta$ 

### **Hyperfinite Graphs**



- ( $\epsilon$ ,  $\delta$ )-hyperfinite graphs: can remove  $\epsilon |V|$  edges and get components of size at most  $\delta$
- hyperfinite family of graphs: there is  $\rho$  such that all graphs are  $(\epsilon, \rho(\epsilon))$ -hyperfinite for all  $\epsilon > 0$

#### Taxonomy



Krzysztof Onak – *Sublinear Graph Approximation Algorithms* – p. 19/32

If someone gave us a  $(\epsilon/2, \delta)$ -partition:



**Sample**  $O(1/\epsilon^2)$  vertices

- Compute minimum vertex cover for the sampled components
- Return the fraction of the sampled vertices in the covers

If someone gave us a  $(\epsilon/2, \delta)$ -partition:



**Sample**  $O(1/\epsilon^2)$  vertices

- Compute minimum vertex cover for the sampled components
- Return the fraction of the sampled vertices in the covers

This gives  $\pm \epsilon$  approximation to VC(G)/n in constant time:

- Cut edges change VC(G) by at most  $\epsilon n/2$
- Can compute vertex cover separately for each component

If someone gave us a  $(\epsilon/2, \delta)$ -partition:



Bad news:

We don't have a partition

If someone gave us a  $(\epsilon/2, \delta)$ -partition:



Bad news:

We don't have a partition

Good news:

# We can compute it ourselves without looking at the entire graph



Bad news:

We don't have a partition

Good news:

We can compute it ourselves without looking at the entire graph

### New Tool: Partitioning Oracles

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 21/32

- $\mathcal{C} = fixed hyperfinite class$
- oracle has query access to G = (V, E)(G need not be in C)



- $\mathcal{C} = fixed hyperfinite class$ 
  - oracle has query access to G = (V, E)(G need not be in C)
  - oracle provides query access to partition P of V; for each v, oracle returns  $P(v) \subseteq V$  s.t.  $v \in P(v)$



- $\mathcal{C} = fixed hyperfinite class$ 
  - oracle has query access to G = (V, E)(G need not be in C)
  - oracle provides query access to partition P of V; for each v, oracle returns  $P(v) \subseteq V$  s.t.  $v \in P(v)$
  - Properties of P:
    - each |P(v)| = O(1)



- $\mathcal{C} = fixed hyperfinite class$ 
  - oracle has query access to G = (V, E)(G need not be in C)
  - oracle provides query access to partition P of V; for each v, oracle returns  $P(v) \subseteq V$  s.t.  $v \in P(v)$
  - Properties of P:
    - each |P(v)| = O(1)
    - If  $G \in \mathcal{C}$ , number of cut edges  $\leq \epsilon n$  w.p.  $\frac{99}{100}$



- $\mathcal{C} = fixed hyperfinite class$ 
  - oracle has query access to G = (V, E)(G need not be in C)
  - oracle provides query access to partition P of V; for each v, oracle returns  $P(v) \subseteq V$  s.t.  $v \in P(v)$
  - Properties of P:
    - each |P(v)| = O(1)
    - If  $G \in \mathcal{C}$ , number of cut edges  $\leq \epsilon n$  w.p.  $\frac{99}{100}$
    - partition  $P(\cdot)$  is not a function of queries, it is a function of graph structure and random bits



Krzysztof Onak – *Sublinear Graph Approximation Algorithms* – p. 22/32

- Generic oracle for any hyperfinite class of graphs
  - Query complexity:  $2^{d^{O(\rho(\epsilon^3/54000))}}$
  - Via local simulation of a greedy partitioning procedure (uses [Nguyen, O. 2008])

- Generic oracle for any hyperfinite class of graphs
  - Query complexity:  $2^{d^{O(\rho(\epsilon^3/54000))}}$
- For minor-free graphs:
  - Query complexity:  $d^{\text{poly}(1/\epsilon)}$
  - Via techniques from distributed algorithms
     [Czygrinow, Hańćkowiak, Wawrzyniak 2008]

- Generic oracle for any hyperfinite class of graphs
  - Query complexity:  $2^{d^{O(\rho(\epsilon^3/54000))}}$
- For minor-free graphs:
  - Query complexity:  $d^{\text{poly}(1/\epsilon)}$
- For  $\rho(\epsilon) \le \operatorname{poly}(1/\epsilon)$ :
  - Query complexity:  $2^{\text{poly}(d/\epsilon)}$
  - Via methods from distributed algorithms and partitioning methods of Andersen and Peres (2009)

- Generic oracle for any hyperfinite class of graphs
  - Query complexity:  $2^{d^{O(\rho(\epsilon^3/54000))}}$
- For minor-free graphs:
  - Query complexity:  $d^{\text{poly}(1/\epsilon)}$
- For  $\rho(\epsilon) \leq \text{poly}(1/\epsilon)$ :
  - Query complexity:  $2^{\text{poly}(d/\epsilon)}$
- Time complexity?
  - Q = query complexity
  - k =number of queries
  - Running time  $= O(kQ \cdot \log(kQ))$

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 24/32

1. Approximation of graph parameters in hyperfinite graphs

- 1. Approximation of graph parameters in hyperfinite graphs
- 2. Testing minor-closed properties
  - Simpler proof of the result of Benjamini, Schramm, and Shapira (2008)

- 1. Approximation of graph parameters in hyperfinite graphs
- 2. Testing minor-closed properties
  - Simpler proof of the result of Benjamini, Schramm, and Shapira (2008)
- 3. Approximating distance to hereditary properties in hyperfinite graphs
  - Earlier only known to be testable
     [Czumaj, Shapira, Sohler 2009]
### **Application 1: Approximation**

- For hyperfinite graphs, can get  $\pm \epsilon n$  approximation to:
  - minimum vertex cover size (that is also the independence number)
  - minimum dominating set size
  - in time independent of the graph size

### **Application 1: Approximation**

- For hyperfinite graphs, can get  $\pm \epsilon n$  approximation to:
  - minimum vertex cover size (that is also the independence number)
  - minimum dominating set size

in time independent of the graph size

- Earlier/independent proofs of the same results
  - Elek 2009: for graphs with subexponential growth

### **Application 1: Approximation**

- For hyperfinite graphs, can get  $\pm \epsilon n$  approximation to:
  - minimum vertex cover size (that is also the independence number)
  - minimum dominating set size

in time independent of the graph size

- Earlier/independent proofs of the same results
  - Elek 2009: for graphs with subexponential growth
  - Czygrinow, Hańćkowiak, Wawrzyniak (2008)
    + Parnas, Ron (2007): for minor-free graphs

Testing *H*-minor-freeness in the sparse graph model of Goldreich and Ron (1997)

- Input: query access to constant degree graph G & parameter  $\epsilon > 0$
- **Goal:** w.p. 2/3
  - accept *H*-minor-free graphs
  - reject graphs far from H-minor-freeness:  $\geq \epsilon n$  edges must be removed to achieve H-minor-freeness

Testing *H*-minor-freeness in the sparse graph model of Goldreich and Ron (1997)

- Input: query access to constant degree graph G & parameter  $\epsilon > 0$
- **Goal:** w.p. 2/3
  - accept *H*-minor-free graphs
  - reject graphs far from H-minor-freeness:  $\geq \epsilon n$  edges must be removed to achieve H-minor-freeness

Time and query complexity:

- **Goldreich, Ron (1997): cycle-freeness in**  $poly(1/\epsilon)$  time
- **•** Benjamini, Schramm, Shapira (2008): any minor in  $2^{2^{2^{\operatorname{poly}(1/\epsilon)}}}$  time

Testing *H*-minor-freeness in the sparse graph model of Goldreich and Ron (1997)

- Input: query access to constant degree graph G & parameter  $\epsilon > 0$
- **Goal:** w.p. 2/3
  - accept *H*-minor-free graphs
  - reject graphs far from H-minor-freeness:  $\geq \epsilon n$  edges must be removed to achieve H-minor-freeness

Time and query complexity:

- **Goldreich, Ron (1997): cycle-freeness in**  $poly(1/\epsilon)$  time
- **Benjamini, Schramm, Shapira (2008):** any minor in  $2^{2^{2^{\text{poly}(1/\epsilon)}}}$  time
- This work:  $2^{poly(1/\epsilon)}$  and simpler proof

**Example:** Testing planarity (i.e.,  $K_5$ - and  $K_{3,3}$ -minor-freeness)

**Example:** Testing planarity

(i.e.,  $K_5$ - and  $K_{3,3}$ -minor-freeness)

- ▲ Algorithm (given partitioning oracle for planar graphs that usually cuts  $\leq \epsilon n/2$  edges):
  - Estimate the number of cut edges by sampling
  - If greater than  $\epsilon n/2$ , reject
  - Check a few random components if planar
  - If any non-planar found, reject otherwise, accept



Example: Testing planarity

(i.e.,  $K_5$ - and  $K_{3,3}$ -minor-freeness)

- ▲ Algorithm (given partitioning oracle for planar graphs that usually cuts  $\leq \epsilon n/2$  edges):
  - Estimate the number of cut edges by sampling
  - If greater than  $\epsilon n/2$ , reject
  - Check a few random components if planar
  - If any non-planar found, reject otherwise, accept
- Why it works:
  - planar: few edges cut in the partition
  - $\epsilon$ -far: either many edges cut or many copies of  $K_{3,3}$  or  $K_5$



### Simplest Oracle

Global procedure:



Global procedure:

### Global procedure:



### Global procedure:



# Global procedure:

# Global procedure:

# Global procedure:

### Global procedure: $\cap$

### **Local simulation**



Use technique of Nguyen and O. (2008):

Random numbers assigned to vertices generate a random permutation

### **Local simulation**



Use technique of Nguyen and O. (2008):

- Random numbers assigned to vertices generate a random permutation
- **•** To find a component of v:
  - recursively check what happened for close vertices with lower numbers
  - if v still in graph, try to construct a component

### **Open Problems**

Tight bounds for vertex cover and maximum matching

### **Open Problems**

Tight bounds for vertex cover and maximum matching

- Is there a  $poly(1/\epsilon)$ -time/query partitioning oracle for minor-free graphs?
  - This would give a polynomial time/query tester for minor-freeness, and resolve an open question of Benjamini, Schramm, Shapira (2008)

### **Open Problems**

Tight bounds for vertex cover and maximum matching

- Is there a  $poly(1/\epsilon)$ -time/query partitioning oracle for minor-free graphs?
  - This would give a polynomial time/query tester for minor-freeness, and resolve an open question of Benjamini, Schramm, Shapira (2008)
- Good approximation algorithms for other popular classes of graphs