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Motivation

Want to learn a combinatorial parameter of a graph:

the maximum matching size

the independence number α(G),

the minimum vertex cover size,

the minimum dominating set size
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Motivation

Want to learn a combinatorial parameter of a graph:

the maximum matching size

the independence number α(G),

the minimum vertex cover size,

the minimum dominating set size

Is there a way to compute/approximate it
without finding:

large matching,

large independent set,

small vertex cover,

small dominating set?
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Motivation

Want to learn a combinatorial parameter of a graph:

the maximum matching size

the independence number α(G),

the minimum vertex cover size,

the minimum dominating set size

Is there a way to compute/approximate it
without finding:

large matching,

large independent set,

small vertex cover,

small dominating set?

The answer is YES in many cases

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 2/32



The Model

Bounded-degree graph G:
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Query access to adjacency list of each node
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Finding a Maximal

Independent Set Locally
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Oracle for Maximal Independent Set
Construct oracle O:

O has query access to G = (V,E)

O provides query access to maximal independent set I ⊆ V

I is not a function of queries
it is a function of G and random bits

Oracle
Yes/No

v ∈ I?

Goal: Minimize the query processing time
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Oracle for Maximal Independent Set
Construct oracle O:

O has query access to G = (V,E)

O provides query access to maximal independent set I ⊆ V

I is not a function of queries
it is a function of G and random bits

Oracle
Yes/No

v ∈ I?

Goal: Minimize the query processing time

One solution: Luby’s maximal independent set algorithm (1986)
simulated locally [Marko, Ron 2007]

Here: a method better for sublinear algorithms
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Our Method
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex
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Our Method
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

?

To check if v ∈ I
recursively check if neighbors w s.t. r(w) < r(v) are in I
v ∈ I ⇐⇒ none of them in I
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Our Method
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex
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?

To check if v ∈ I
recursively check if neighbors w s.t. r(w) < r(v) are in I
v ∈ I ⇐⇒ none of them in I
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Our Method
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Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36 .11

.22

.27

?

??

To check if v ∈ I
recursively check if neighbors w s.t. r(w) < r(v) are in I
v ∈ I ⇐⇒ none of them in I
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Our Method
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

.65

.43
.79

.41

.75

.60

.36 .11

.22

.27

To check if v ∈ I
recursively check if neighbors w s.t. r(w) < r(v) are in I
v ∈ I ⇐⇒ none of them in I

E[#visited vertices] and query complexity of order 2O(d)
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Improvement for Random Query
Yoshida, Yamamoto, Ito (STOC 2009)

Heuristic:

Consider neighbors w of v in ascending order of r(w)

Once you find w ∈ I, v 6∈ I
(i.e., don’t check other neighbors)
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Heuristic:

Consider neighbors w of v in ascending order of r(w)

Once you find w ∈ I, v 6∈ I
(i.e., don’t check other neighbors)

They show:

E permutations, start vertex [#recursive calls] ≤ 1 +
m

n
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Improvement for Random Query
Yoshida, Yamamoto, Ito (STOC 2009)

Heuristic:

Consider neighbors w of v in ascending order of r(w)

Once you find w ∈ I, v 6∈ I
(i.e., don’t check other neighbors)

They show:

E permutations, start vertex [#recursive calls] ≤ 1 +
m

n

Which gives:

expected query complexity for random vertex = O(d2)
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Simplest Application:

Vertex Cover
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Vertex Cover

Graph G = (V,E)

Goal: find smallest set S of nodes such that each edge has
endpoint in S
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Vertex Cover

Graph G = (V,E)

Goal: find smallest set S of nodes such that each edge has
endpoint in S

Classical 2-approximation algorithm [Gavril]:

Greedily find a maximal matching M

Output the set of nodes matched in M
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Vertex Cover

Graph G = (V,E)

Goal: find smallest set S of nodes such that each edge has
endpoint in S

Classical 2-approximation algorithm [Gavril]:
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Sublinear-Time Algorithm

Idea of Parnas and Ron (2007):

construct oracle O that answers queries: Is e ∈ E in M?
for a fixed maximal matching M
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Sublinear-Time Algorithm

Idea of Parnas and Ron (2007):

construct oracle O that answers queries: Is e ∈ E in M?
for a fixed maximal matching M

approximate the number of vertices matched in M up to

±ǫn by checking for O(1/ǫ2) vertices if they are matched

#queries to O = (#tested nodes) · (max-degree) = O(d/ǫ2)
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approximate the number of vertices matched in M up to

±ǫn by checking for O(1/ǫ2) vertices if they are matched

#queries to O = (#tested nodes) · (max-degree) = O(d/ǫ2)

Approximation notion:
Y is an (α, β)-approximation to X if X ≤ Y ≤ α · X + β
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Sublinear-Time Algorithm

Idea of Parnas and Ron (2007):

construct oracle O that answers queries: Is e ∈ E in M?
for a fixed maximal matching M

approximate the number of vertices matched in M up to

±ǫn by checking for O(1/ǫ2) vertices if they are matched

#queries to O = (#tested nodes) · (max-degree) = O(d/ǫ2)

Approximation notion:
Y is an (α, β)-approximation to X if X ≤ Y ≤ α · X + β

(2, ǫn)-approximation:
Simulate O using our method
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Query Complexity

Parnas, Ron (2007):

oracles via simulation of local distributed algorithms

used Kuhn, Moscibroda, Wattenhofer (2006)

∀c > 2, (c, ǫn)-approximation with dO(log(d))/ǫ2 queries

(2, ǫn)-approximation with dO(log(d)/ǫ3) queries

t communication rounds ⇒ dO(t) queries
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∀c > 2, (c, ǫn)-approximation with dO(log(d))/ǫ2 queries

(2, ǫn)-approximation with dO(log(d)/ǫ3) queries

Marko, Ron (2007) using Luby’s algorithm:

(2, ǫn)-approximation with dO(log(d/ǫ)) queries
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Query Complexity

Parnas, Ron (2007):

oracles via simulation of local distributed algorithms

used Kuhn, Moscibroda, Wattenhofer (2006)

∀c > 2, (c, ǫn)-approximation with dO(log(d))/ǫ2 queries

(2, ǫn)-approximation with dO(log(d)/ǫ3) queries

Marko, Ron (2007) using Luby’s algorithm:

(2, ǫn)-approximation with dO(log(d/ǫ)) queries

Nguyen, O. (2008):

(2, ǫn)-approximation with 2O(d)/ǫ2 queries
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Query Complexity

Parnas, Ron (2007):

oracles via simulation of local distributed algorithms

used Kuhn, Moscibroda, Wattenhofer (2006)

∀c > 2, (c, ǫn)-approximation with dO(log(d))/ǫ2 queries

(2, ǫn)-approximation with dO(log(d)/ǫ3) queries

Marko, Ron (2007) using Luby’s algorithm:

(2, ǫn)-approximation with dO(log(d/ǫ)) queries

Nguyen, O. (2008):

(2, ǫn)-approximation with 2O(d)/ǫ2 queries

Yoshida, Yamamoto, Ito (2009) using our suggestion:

(2, ǫn)-approximation with O(d3/ǫ2) queries

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 11/32



Lower Bounds

Trevisan 2007:

(c, ǫn)-approximation requires Ω(
√

n) queries for c < 2
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Lower Bounds

Trevisan 2007:

(c, ǫn)-approximation requires Ω(
√

n) queries for c < 2

Parnas, Ron 2007:

(O(1), ǫn)-approximation requires Ω(d) queries
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Other Problems
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Maximum Matching Size
(1, ǫn)-approximation for maximum matching size

Construct an oracle for a matching with no augmenting
paths of length Θ(1/ǫ)

Can be achieved by a sequence of oracles, where each
oracle improves the matching from the previous oracle

Each improvement corresponds to a maximal set of
augmenting paths

no

paths

of length≤ 1

no

paths

of length≤ 7

approximationsampling

no

paths

of length≤ 3

no

paths

of length≤ 5

Oracle O1:

augmenting augmenting augmenting augmenting

Oracle O2: Oracle O3: Oracle O4:
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Maximum Matching Size
(1, ǫn)-approximation for maximum matching size

Construct an oracle for a matching with no augmenting
paths of length Θ(1/ǫ)

Can be achieved by a sequence of oracles, where each
oracle improves the matching from the previous oracle

Each improvement corresponds to a maximal set of
augmenting paths

no

paths

of length≤ 1

no

paths

of length≤ 7

approximationsampling

no

paths

of length≤ 3

no

paths

of length≤ 5

Oracle O1:

augmenting augmenting augmenting augmenting

Oracle O2: Oracle O3: Oracle O4:

Query complexity and running time:

Our analysis: 2dO(1/ǫ)

Yoshida, Yamamoto, Ito (2009): dO(1/ǫ2)
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Set Cover and Dominating Set

Set Cover:
Assumption:

each element in at most t = O(1) of n sets
each set has at most s = O(1) elements

Guarantee: (1 + ln s, ǫn)-approximation

How: use classical greedy algorithm

Complexity: function of s, t, and ǫ
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each set has at most s = O(1) elements

Guarantee: (1 + ln s, ǫn)-approximation

How: use classical greedy algorithm

Complexity: function of s, t, and ǫ

Dominating Set:

(1 + ln(d + 1), ǫn)-approximation in time function(d, ǫ)
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Set Cover and Dominating Set

Set Cover:
Assumption:

each element in at most t = O(1) of n sets
each set has at most s = O(1) elements

Guarantee: (1 + ln s, ǫn)-approximation

How: use classical greedy algorithm

Complexity: function of s, t, and ǫ

Dominating Set:

(1 + ln(d + 1), ǫn)-approximation in time function(d, ǫ)

(O(log d), ǫn)-approximation known before via Parnas,
Ron (2007) + Kuhn, Moscibroda, Wattenhofer (2006)
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Set Cover and Dominating Set

Set Cover:
Assumption:

each element in at most t = O(1) of n sets
each set has at most s = O(1) elements

Guarantee: (1 + ln s, ǫn)-approximation

How: use classical greedy algorithm

Complexity: function of s, t, and ǫ

Dominating Set:

(1 + ln(d + 1), ǫn)-approximation in time function(d, ǫ)

(O(log d), ǫn)-approximation known before via Parnas,
Ron (2007) + Kuhn, Moscibroda, Wattenhofer (2006)

Alon: Ω(log n) queries to (o(log d), ǫn)-approximate

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 15/32



Maximum Matching

Maximum Weight Matching:

Assumption: degree d and all weights in [0,1]

Guarantee: (1, ǫn)-approximation

How: use Pettie and Sanders (2004)

Complexity: function of d and ǫ
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Maximum Matching

Maximum Weight Matching:

Assumption: degree d and all weights in [0,1]

Guarantee: (1, ǫn)-approximation

How: use Pettie and Sanders (2004)

Complexity: function of d and ǫ

Maximum Independent Set (Alon):

Upper bound:
(

O
(

d·log log d
log d

)

, ǫn
)

-approximation in time function(d, ǫ)

Lower bound:

Ω(log n) queries to
(

o
(

d
log d

)

, ǫn
)

-approximate
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Local Graph Partitions
[Hassidim, Kelner, Nguyen, O. 2009]
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Hyperfinite Graphs

(ǫ, δ)-partition

(All graphs of degree O(1))

(ǫ, δ)-hyperfinite graphs: can remove ǫ|V | edges and get
components of size at most δ
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Hyperfinite Graphs

(ǫ, δ)-partition

(All graphs of degree O(1))

(ǫ, δ)-hyperfinite graphs: can remove ǫ|V | edges and get
components of size at most δ

hyperfinite family of graphs: there is ρ such that all
graphs are (ǫ, ρ(ǫ))-hyperfinite for all ǫ > 0
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Taxonomy

Subexponential

Minor−Free Graphs

Hyperfinite Graphs

Growth

Polynomial
Growth
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Using a Partition

If someone gave us a (ǫ/2, δ)-partition:

Algorithm

Sample O(1/ǫ2) vertices

Compute minimum vertex cover for the sampled
components

Return the fraction of the sampled vertices in the covers
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Using a Partition

If someone gave us a (ǫ/2, δ)-partition:

Algorithm

Sample O(1/ǫ2) vertices

Compute minimum vertex cover for the sampled
components

Return the fraction of the sampled vertices in the covers

This gives ±ǫ approximation to VC(G)/n in constant time:

Cut edges change VC(G) by at most ǫn/2

Can compute vertex cover separately for each
component
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Using a Partition

If someone gave us a (ǫ/2, δ)-partition:

Algorithm

Bad news:

We don’t have a partition
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Using a Partition

If someone gave us a (ǫ/2, δ)-partition:

Algorithm

Bad news:

We don’t have a partition

Good news:

We can compute it ourselves
without looking at the entire graph
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Using a Partition

AlgorithmPartitioning

Oracle

Bad news:

We don’t have a partition

Good news:

We can compute it ourselves
without looking at the entire graph

New Tool: Partitioning Oracles
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Partitioning Oracle

Oracle
vertex v

P (v)

C = fixed hyperfinite class

oracle has query access to G = (V,E)
(G need not be in C)
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Partitioning Oracle

Oracle
vertex v

P (v)

C = fixed hyperfinite class

oracle has query access to G = (V,E)
(G need not be in C)

oracle provides query access to partition P of V ;
for each v, oracle returns P (v) ⊆ V s.t. v ∈ P (v)
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P (v)

C = fixed hyperfinite class

oracle has query access to G = (V,E)
(G need not be in C)

oracle provides query access to partition P of V ;
for each v, oracle returns P (v) ⊆ V s.t. v ∈ P (v)

Properties of P :

each |P (v)| = O(1)
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Partitioning Oracle

Oracle
vertex v

P (v)

C = fixed hyperfinite class

oracle has query access to G = (V,E)
(G need not be in C)

oracle provides query access to partition P of V ;
for each v, oracle returns P (v) ⊆ V s.t. v ∈ P (v)

Properties of P :

each |P (v)| = O(1)

If G ∈ C, number of cut edges ≤ ǫn w.p. 99
100
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Partitioning Oracle

Oracle
vertex v

P (v)

C = fixed hyperfinite class

oracle has query access to G = (V,E)
(G need not be in C)

oracle provides query access to partition P of V ;
for each v, oracle returns P (v) ⊆ V s.t. v ∈ P (v)

Properties of P :

each |P (v)| = O(1)

If G ∈ C, number of cut edges ≤ ǫn w.p. 99
100

partition P (·) is not a function of queries,
it is a function of graph structure and random bits
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Our Oracles
Generic oracle for any hyperfinite class of graphs

Query complexity: 2dO(ρ(ǫ3/54000))

Via local simulation of a greedy partitioning
procedure (uses [Nguyen, O. 2008])
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Our Oracles
Generic oracle for any hyperfinite class of graphs

Query complexity: 2dO(ρ(ǫ3/54000))

For minor-free graphs:

Query complexity: dpoly(1/ǫ)

Via techniques from distributed algorithms
[Czygrinow, Hańćkowiak, Wawrzyniak 2008]
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Our Oracles
Generic oracle for any hyperfinite class of graphs

Query complexity: 2dO(ρ(ǫ3/54000))

For minor-free graphs:

Query complexity: dpoly(1/ǫ)

For ρ(ǫ) ≤ poly(1/ǫ):

Query complexity: 2poly(d/ǫ)

Via methods from distributed algorithms and
partitioning methods of Andersen and Peres (2009)
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Our Oracles
Generic oracle for any hyperfinite class of graphs

Query complexity: 2dO(ρ(ǫ3/54000))

For minor-free graphs:

Query complexity: dpoly(1/ǫ)

For ρ(ǫ) ≤ poly(1/ǫ):

Query complexity: 2poly(d/ǫ)

Time complexity?

Q = query complexity

k = number of queries

Running time = O(kQ · log(kQ))
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Three Applications
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Three Applications

1. Approximation of graph parameters
in hyperfinite graphs
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Three Applications

1. Approximation of graph parameters
in hyperfinite graphs

2. Testing minor-closed properties

Simpler proof of the result of Benjamini,
Schramm, and Shapira (2008)
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Three Applications

1. Approximation of graph parameters
in hyperfinite graphs

2. Testing minor-closed properties

Simpler proof of the result of Benjamini,
Schramm, and Shapira (2008)

3. Approximating distance to hereditary properties
in hyperfinite graphs

Earlier only known to be testable
[Czumaj, Shapira, Sohler 2009]
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Application 1: Approximation

For hyperfinite graphs, can get ±ǫn approximation to:

minimum vertex cover size
(that is also the independence number)

minimum dominating set size

in time independent of the graph size
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Application 1: Approximation

For hyperfinite graphs, can get ±ǫn approximation to:

minimum vertex cover size
(that is also the independence number)

minimum dominating set size

in time independent of the graph size

Earlier/independent proofs of the same results

Elek 2009: for graphs with subexponential growth
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Application 1: Approximation

For hyperfinite graphs, can get ±ǫn approximation to:

minimum vertex cover size
(that is also the independence number)

minimum dominating set size

in time independent of the graph size

Earlier/independent proofs of the same results

Elek 2009: for graphs with subexponential growth

Czygrinow, Hańćkowiak, Wawrzyniak (2008)
+ Parnas, Ron (2007): for minor-free graphs
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Application 2: Testing

Testing H-minor-freeness in the sparse graph model
of Goldreich and Ron (1997)

Input: query access to constant degree graph G
& parameter ǫ > 0

Goal: w.p. 2/3
accept H-minor-free graphs
reject graphs far from H-minor-freeness: ≥ ǫn edges
must be removed to achieve H-minor-freeness
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Application 2: Testing

Testing H-minor-freeness in the sparse graph model
of Goldreich and Ron (1997)

Input: query access to constant degree graph G
& parameter ǫ > 0

Goal: w.p. 2/3
accept H-minor-free graphs
reject graphs far from H-minor-freeness: ≥ ǫn edges
must be removed to achieve H-minor-freeness

Time and query complexity:

Goldreich, Ron (1997): cycle-freeness in poly(1/ǫ) time

Benjamini, Schramm, Shapira (2008): any minor in 222poly(1/ǫ)

time
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Application 2: Testing

Testing H-minor-freeness in the sparse graph model
of Goldreich and Ron (1997)

Input: query access to constant degree graph G
& parameter ǫ > 0

Goal: w.p. 2/3
accept H-minor-free graphs
reject graphs far from H-minor-freeness: ≥ ǫn edges
must be removed to achieve H-minor-freeness

Time and query complexity:

Goldreich, Ron (1997): cycle-freeness in poly(1/ǫ) time

Benjamini, Schramm, Shapira (2008): any minor in 222poly(1/ǫ)

time

This work: 2poly(1/ǫ) and simpler proof

Krzysztof Onak – Sublinear Graph Approximation Algorithms – p. 27/32



Application 2: Testing

Example: Testing planarity
(i.e., K5- and K3,3-minor-freeness)
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Application 2: Testing

Example: Testing planarity
(i.e., K5- and K3,3-minor-freeness)

Algorithm (given partitioning oracle for planar graphs
that usually cuts ≤ ǫn/2 edges):

Estimate the number of cut edges by sampling

If greater than ǫn/2, reject

Check a few random components if planar

If any non-planar found, reject
otherwise, accept
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Application 2: Testing

Example: Testing planarity
(i.e., K5- and K3,3-minor-freeness)

Algorithm (given partitioning oracle for planar graphs
that usually cuts ≤ ǫn/2 edges):

Estimate the number of cut edges by sampling

If greater than ǫn/2, reject

Check a few random components if planar

If any non-planar found, reject
otherwise, accept

Why it works:

planar: few edges cut in the partition

ǫ-far: either many edges cut
or many copies of K3,3 or K5
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Simplest Oracle
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Iterative Procedure

Global procedure:
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Iterative Procedure

Global procedure:
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Local simulation

Use technique of Nguyen and O. (2008):

Random numbers assigned to vertices generate a
random permutation
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Local simulation

Use technique of Nguyen and O. (2008):

Random numbers assigned to vertices generate a
random permutation

To find a component of v:

recursively check what happened for close vertices
with lower numbers

if v still in graph, try to construct a component
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Open Problems

Tight bounds for vertex cover and maximum matching
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Open Problems

Tight bounds for vertex cover and maximum matching

Is there a poly(1/ǫ)-time/query partitioning oracle for
minor-free graphs?

This would give a polynomial time/query tester for
minor-freeness, and resolve an open question of
Benjamini, Schramm, Shapira (2008)
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Open Problems

Tight bounds for vertex cover and maximum matching

Is there a poly(1/ǫ)-time/query partitioning oracle for
minor-free graphs?

This would give a polynomial time/query tester for
minor-freeness, and resolve an open question of
Benjamini, Schramm, Shapira (2008)

Good approximation algorithms for other popular
classes of graphs
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