Testing linear-invariant non-linear properties

Victor Chen joint with Arnab Bhattacharyya, Madhu Sudan, Ning Xie

Tsinghua University

January 10, 2010

 QQ

• [Kaufman+Sudan] Suppose a family $\mathcal F$ is linear, linear-invariant, and locally characterized. Then $\mathcal F$ is locally testable.

- [Kaufman+Sudan] Suppose a family F is linear, linear-invariant, and locally characterized. Then F is locally testable.
	- ex. class of low-degree polynomials

 QQ

- [Kaufman+Sudan] Suppose a family $\mathcal F$ is linear, linear-invariant, and locally characterized. Then F is locally testable.
	- ex. class of low-degree polynomials
	- is linearity necessary for testability?

- [Kaufman+Sudan] Suppose a family $\mathcal F$ is linear, linear-invariant, and locally characterized. Then F is locally testable.
	- ex. class of low-degree polynomials
	- is linearity necessary for testability? No.

- [Kaufman+Sudan] Suppose a family $\mathcal F$ is linear, linear-invariant, and locally characterized. Then $\mathcal F$ is locally testable.
	- ex. class of low-degree polynomials
	- is linearity necessary for testability? No.

• [Our work] There exist infinitely many non-linear, linear-invariant, and locally characterized families $\mathcal F$ that are locally testable.

つひひ

- [Kaufman+Sudan] Suppose a family $\mathcal F$ is linear, linear-invariant, and locally characterized. Then $\mathcal F$ is locally testable.
	- ex. class of low-degree polynomials
	- is linearity necessary for testability? No.

• [Our work] There exist infinitely many non-linear, linear-invariant, and locally characterized families $\mathcal F$ that are locally testable.

 $\mathcal{F} \subseteq \{\{0,1\}^n \to \{0,1\}\}\$

Constraint: $C_{x,y} = (x, y, x + y, \vec{1}), x, y \in \{0, 1\}^n$

4 **D** F

 \sim

⊞ ⊁ ⊣

• **Construction:**
$$
C_{x,y} = (x, y, x + y, \vec{1}), x, y \in \{0, 1\}^n
$$

f is "triangle-free" iff $\forall x, y, f$ fails the constriant $C_{x,y}$

• **Construction:**
$$
C_{x,y} = (x, y, x + y, \vec{1}), x, y \in \{0, 1\}^n
$$

f is "triangle-free" iff $\forall x, y, f$ fails the constriant $C_{x,y}$ iff $\forall x, y, \langle f(x), f(y), f(x + y) \rangle \neq \vec{1}$

• **Construction:**
$$
C_{x,y} = (x, y, x + y, \vec{1}), x, y \in \{0, 1\}^n
$$

f is "triangle-free" iff $\forall x, y, f$ fails the constriant $C_{x,y}$ iff $\forall x, y, \langle f(x), f(y), f(x + y) \rangle \neq \vec{1}$

• Property of triangle-freeness is non-linear and linear-invariant

• **Constraint**:
$$
C_{x,y} = (x, y, x + y, \vec{1}), x, y \in \{0, 1\}^n
$$

f is "triangle-free" iff $\forall x, y, f$ fails the constriant $C_{x,y}$ iff $\forall x, y, \langle f(x), f(y), f(x + y) \rangle \neq \vec{1}$

• Property of triangle-freeness is non-linear and linear-invariant

Theorem (Green)

The property of triangle-freeness is locally testable.

つへへ

For every graphic matroid G on k edges,

 \blacksquare

 \sim

For every graphic matroid G on k edges,

 \bullet constraint: $C_{G;\{x_i\}} = (x_1,\ldots,x_k;\vec{1})$

 QQ

For every graphic matroid G on k edges,

constraint: $C_{G; \{x_i\}} = (x_1, \ldots, x_k; \vec{1})$ the edges of G are labeled by x_i

For every graphic matroid G on k edges,

• constraint: $C_{G; \{x_i\}} = (x_1, \ldots, x_k; \vec{1})$ the edges of G are labeled by x_i for $S \subset [k]$, $\{x_i, i \in S\}$ contains a linear dependency iff it contains a cycle

つひひ

For every graphic matroid G on k edges,

\n- constraint:
$$
C_{G; \{x_i\}} = (x_1, \ldots, x_k; \vec{1})
$$
 the edges of G are labeled by x_i for $S \subset [k]$, $\{x_i, i \in S\}$ contains a linear dependency iff it contains a cycle
\n

o characterization:

f is G-free if for every $\{x_i\}$, f fails constraint $C_{G;\{x_i\}}$

For every graphic matroid G on k edges,

\n- constraint:
$$
C_{G; \{x_i\}} = (x_1, \ldots, x_k; \vec{1})
$$
 the edges of G are labeled by x_i for $S \subset [k]$, $\{x_i, i \in S\}$ contains a linear dependency iff it contains a cycle
\n

o characterization:

f is G-free if for every $\{x_i\}$, f fails constraint $C_{G;\{x_i\}}$

This work

 \bullet for every G, the property of G-free is locally testable

For every graphic matroid G on k edges,

• constraint: $C_{G; \{x_i\}} = (x_1, ..., x_k; 1)$ the edges of G are labeled by x_i for $S \subset [k]$, $\{x_i, i \in S\}$ contains a linear dependency iff it contains a cycle

o characterization:

f is G-free if for every $\{x_i\}$, f fails constraint $C_{G;\{x_i\}}$

This work

- for every G , the property of G -free is locally testable
- \bullet for infinitely many G, the properties of G-free are distinct

For every graphic matroid G on k edges,

• constraint: $C_{G; \{x_i\}} = (x_1, ..., x_k; 1)$ the edges of G are labeled by x_i for $S \subset [k]$, $\{x_i, i \in S\}$ contains a linear dependency iff it contains a cycle

o characterization:

f is G-free if for every $\{x_i\}$, f fails constraint $C_{G;\{x_i\}}$

This work

- for every G , the property of G -free is locally testable
- \bullet for infinitely many G, the properties of G-free are distinct
- **o** design of algorithm: natural
- analysis of algorithm: Fourier-analytic, Green's regularity lemma

 \leftarrow

 \bullet there exists a graph G on k edges

- \bullet there exists a graph G on k edges
- each edge is associated with an integer from $[k]$

- \bullet there exists a graph G on k edges
- each edge is associated with an integer from $[k]$
- the indicator vector of each cycle C in G lies in the span of the rows of M

- there exists a graph G on k edges
- each edge is associated with an integer from $[k]$
- \bullet the indicator vector of each cycle C in G lies in the span of the rows of M

- there exists a graph G on k edges
- each edge is associated with an integer from $[k]$
- the indicator vector of each cycle C in G lies in the span of the rows of M

- there exists a graph G on k edges
- each edge is associated with an integer from $[k]$
- the indicator vector of each cycle C in G lies in the span of the rows of M

- there exists a graph G on k edges
- each edge is associated with an integer from $[k]$
- \bullet the indicator vector of each cycle C in G lies in the span of the rows of M

- there exists a graph G on k edges
- each edge is associated with an integer from $[k]$
- \bullet the indicator vector of each cycle C in G lies in the span of the rows of M

f is G-free iff no \vec{x} such that $Mx = 0$ and $f(x_1), \ldots, f(x_k) = 1$

つひひ

- there exists a graph G on k edges
- each edge is associated with an integer from $[k]$
- \bullet the indicator vector of each cycle C in G lies in the span of the rows of M

f is G-free iff no \vec{x} such that $Mx = 0$ and $f(x_1), \ldots, f(x_k) = 1$

- \bullet there exists a graph G on k edges
- each edge is associated with an integer from $[k]$
- \bullet the indicator vector of each cycle C in G lies in the span of the rows of M

f is G-free iff no \vec{x} such that $Mx = 0$ and $f(x_1), \ldots, f(x_k) = 1$

つひひ

- \bullet there exists a graph G on k edges
- each edge is associated with an integer from $[k]$
- \bullet the indicator vector of each cycle C in G lies in the span of the rows of M

f is G-free iff no \vec{x} such that $Mx = 0$ and $f(x_1), \ldots, f(x_k) = 1$

- there exists a graph G on k edges
- each edge is associated with an integer from $[k]$
- \bullet the indicator vector of each cycle C in G lies in the span of the rows of M

f is G-free iff no \vec{x} such that $Mx = 0$ and $f(x_1), \ldots, f(x_k) = 1$

つひひ

- there exists a graph G on k edges
- each edge is associated with an integer from $|k|$
- \bullet the indicator vector of each cycle C in G lies in the span of the rows of M

つひひ

• related works

K ロ ▶ K 何 ▶ K

Book B

• related works: stay for Shapira's talk

4 **D** F - 点 \sim \prec

- related works: stay for Shapira's talk
- query complexity $q(\epsilon)$ in terms of proximity parameter ϵ

 QQ

- related works: stay for Shapira's talk
- query complexity $q(\epsilon)$ in terms of proximity parameter ϵ
	- this work: $q(\epsilon)$ =big, super-exponential in $1/\epsilon$
	- [Bhattacharyya, Xie]: $q(\epsilon) = \omega(1/\epsilon)$
	- Is $q(\epsilon)$ at least super-polynomial in $1/\epsilon$?

 QQ

- related works: stay for Shapira's talk
- query complexity $q(\epsilon)$ in terms of proximity parameter ϵ
- analytic or combinatorial techniques for *linear* properties?

- **•** related works: stay for Shapira's talk
- query complexity $q(\epsilon)$ in terms of proximity parameter ϵ
- analytic or combinatorial techniques for *linear* properties?

• Constraints
$$
C = (i_1, \ldots, i_k, \vec{1})
$$

- **•** related works: stay for Shapira's talk
- query complexity $q(\epsilon)$ in terms of proximity parameter ϵ
- analytic or combinatorial techniques for *linear* properties?

• Constraints
$$
C = (i_1, \ldots, i_k, \vec{0})
$$

- **•** related works: stay for Shapira's talk
- query complexity $q(\epsilon)$ in terms of proximity parameter ϵ
- analytic or combinatorial techniques for *linear* properties?
	- Constraints $C = (i_1, \ldots, i_k, V)$

- **•** related works: stay for Shapira's talk
- query complexity $q(\epsilon)$ in terms of proximity parameter ϵ
- analytic or combinatorial techniques for *linear* properties?
	- Constraints $C = (i_1, \ldots, i_k, V)$
	- this work: Examining $V = \{v\}$, $v \neq \vec{1}, \vec{0}$ leads to new testability proofs for linearity and affinity

 QQ

- **•** related works: stay for Shapira's talk
- query complexity $q(\epsilon)$ in terms of proximity parameter ϵ
- analytic or combinatorial techniques for *linear* properties?
	- Constraints $C = (i_1, \ldots, i_k, V)$
	- this work: Examining $V = \{v\}$, $v \neq \vec{1}, \vec{0}$ leads to new testability proofs for linearity and affinity
	- general case for V remains open

 QQ