SUMMONING INFORMATION IN SPACETIME

gives rise to secure bit cc a combination of quantu Secure bit commitment i chanics alone [9, 10].

Another simple examp Figure 2. Even though t each of the reveal points the summoning task. ' there is a causal curve ps diamonds, then summon

Where and when can a qubit be?

eral n can be b n = 2. Encode in an ((n - 1, n))There are n subs

Patrick Hayden and Alex May arXiv:1210.0913

Quantum information bedrock

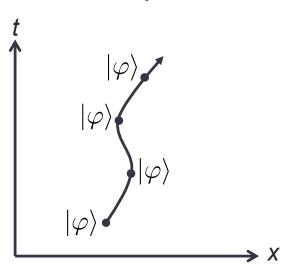
Quantum information cannot be cloned.

Quantum information cannot be replicated in space.

Quantum information **must** be widely replicated in space*time*.

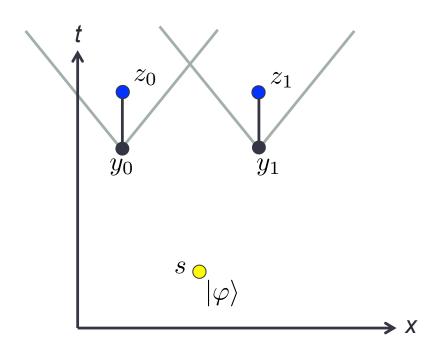
This talk will precisely characterize which forms of replication are possible.

Goal: understand how quantum information can be delocalized in space and time



And yet...

(No-)summoning



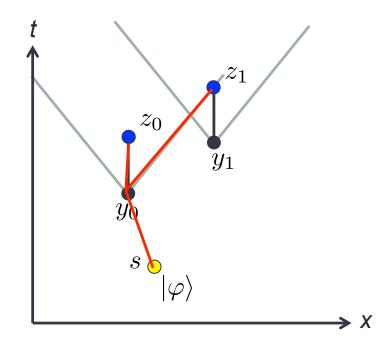
Unknown quantum state is originally localized at s.

A request for the state will be made at either y_0 or y_1 , at which point the state must be exhibited at z_0 or z_1 , resp.

This is prohibited by the combination of no-cloning and relativistic causality if the line segments y_0z_0 and y_1z_1 are outside each others' lightcones.

Kent : arXiv:1101.4612

(No-)summoning



Unknown quantum state is originally localized at s.

A request for the state will be made at either y_0 or y_1 , at which point the state must be exhibited at z_0 or z_1 resp.

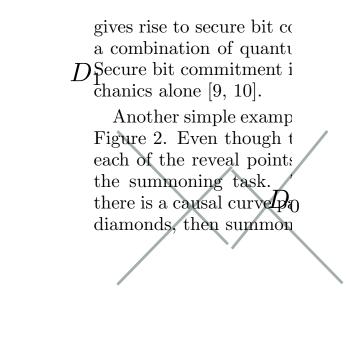
This is possible if...?

Summoning is possible iff z_1 is in the future of y_0 or z_0 is in the future of y_1 .



Kent : arXiv:1204.4022

Summoning as replication



Summoning is possible iff z_1 is in the future of y_0 or z_0 is in the future of y_1 .

Define causal diamond D_j to be the intersection of the future of y_j and the past of z_j -- the points that can both be affected by the request at y_j and can affect the outcome at z_i .

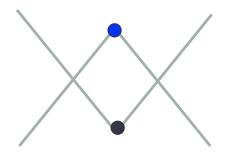
ible iff the several diamonds [

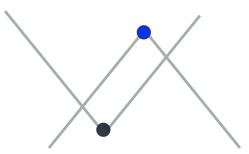
→ X

Summoning is possible iff the *causal diamonds* D_0 and D_1 are causally related: there exists a causal curve from D_0 to D_1 or vice-versa.

Summoning provides an operational definition of what it means for quantum information to be localized in the diamond D_i.

Causal diamond geometry





Diamond becomes a line segment when top and bottom are lightlike separated:

Exploiting quantum error correction

a combination of quantum Secure bit commitment is in chanics alone [9, 10].

Another simple example i: Figure 2. Even though ther each of the reveal points, it the summoning task. The there is a causal curve passin diamonds, then summoning A ((2,3)) threshold quantum secret sharing scheme is prepared at s

One share sent to each of y_i

Each share is then sent at the speed of light along a red line

2 shares pass through each causal diamond $y_i z_i$

The same quantum information is replicated in each causal diamond

Summoning language: if a request is made at y_j then the share at y_i is sent to z_i instead of to z_{i-1}

A more complicated scenario:

so each vertex is incid number of edges is (must be recoverable f total number of shares

eral n can be b n = 2. Encode in an ((n - 1, n))There are n subs

?: All diamonds are causally related

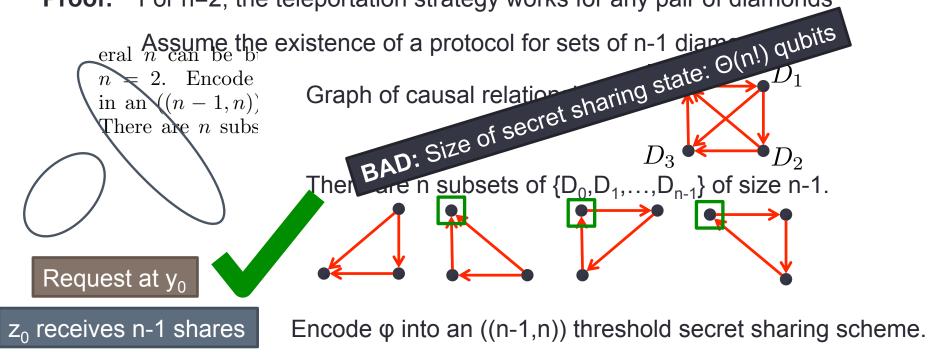
Each and every diamond can contain the same quantum information iff every pair is causally related

Equivalently: iff there is no *obvious* violation of causality or no-cloning

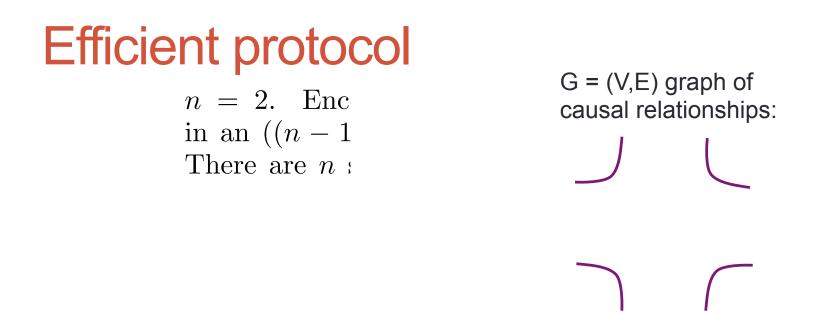
Information replication: the general case

Each and every causal diamond can contain the same quantum information if and only if every pair is causally related.

Proof: For n=2, the teleportation strategy works for any pair of diamonds



Associate one share to each such subset and for each subset execute the protocol recursively with one diamond removed.



Encode φ into a quantum error correcting code with one share for each edge.

Code property: ϕ can be recovered provided all the shares associated to any D_i

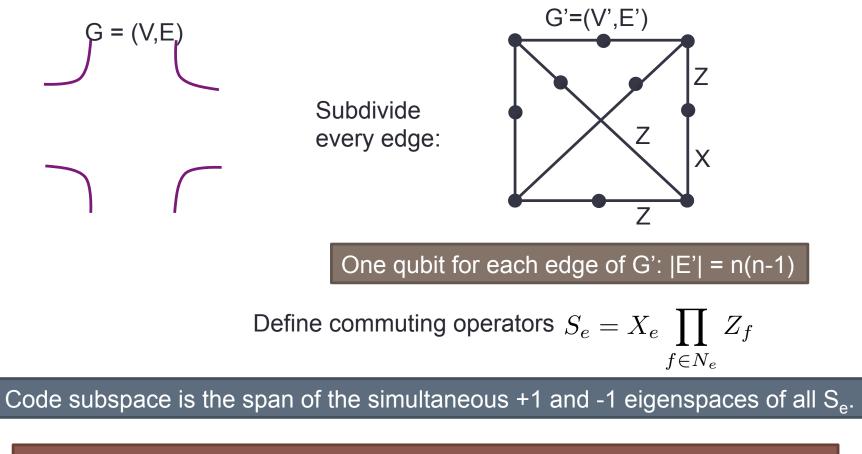
Execute the n=2 teleportation protocol for each edge.

If request made at y_i , then z_i receives all shares associated to D_i and can recover φ .

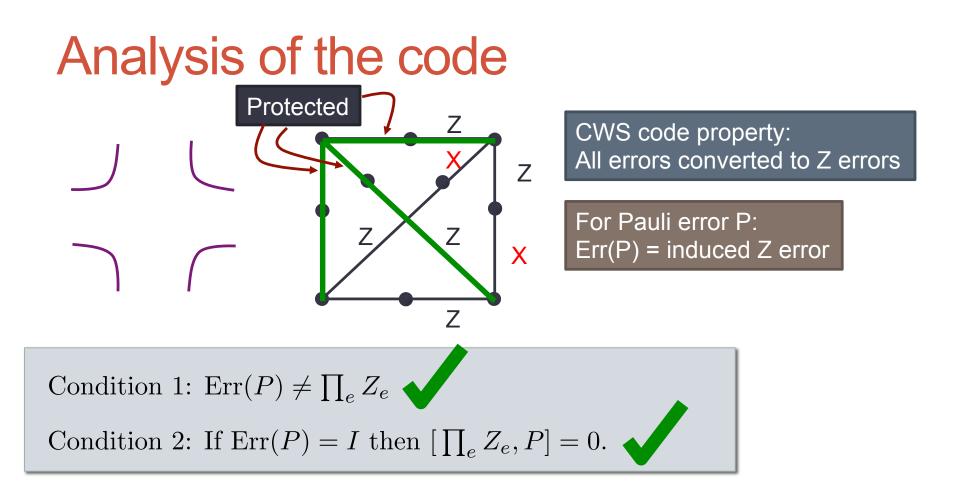
Unusual QEC: $\sim n^2$ shares but recovery using n-1. Vanishing fraction O(1/n).

The quantum error correcting code

Designed using the codeword-stabilized (CWS) quantum code formalism [CSSZ'08]



Each share consists of the 2 qubits associated with each original edge of G.



- Every possible X error induces exactly one Z error on a green edge
- To achieve Err(P) = I, need an *even* number of X errors.
- XZ=-ZX implies that if P contains an even number of X errors, then $[\Pi_e Z_e, P]=0$

Conclusions

- Quantum information can be replicated in a surprising variety of ways in spacetime
- The only constraints on replication are the simplest ones: there can be no obvious violations of no-cloning or causality
- Using the same code, the result can be extended to nonconvex regions, giving an alternate proof of quantum secret sharing using general access structures
- Future directions:
 - Applications to cryptography in Minkowski (and more general) spacetime
 - Cloning paradoxes in black hole evaporation, complementarity, firewalls, etc.

Recruitment opportunity of the year:

Alex May: extraordinary undergraduate student

Lessons for complementarity?

eral n can be b in an ((n-1, n))There are n subs

- n = 2. Encode Surprising replication of quantum information is possible if time is considered
 - The actions required to localize the information to specific points z_i will generally destroy the replication
 - Firewalls:
 - Staying outside BH or falling in constitutes a choice analogous to localizing the information at a particular z_i
 - Simulating N_b measurement on early radiation could destroy replication

(No-)summoning



Kent uses no-summoning as the basis for a quantum relativistically secure bit commitment protocol.

Kent : arXiv:1101.4612