
Complete Insecurity
of Quantum Protocols for

Classical Two-Party Computation

Matthias Christandl (ETH Zurich)
joint work with

Harry Buhrman (CWI, University of Amsterdam)
Christian Schaffner (University of Amsterdam, CWI)

arXiv:1201.0849, Phys. Rev. Lett. 109, 160501 (2012)

Complete Insecurity
of Quantum Protocols for

Classical Two-Party Computation

Matthias Christandl (ETH Zurich)
joint work with

Harry Buhrman (CWI, University of Amsterdam)
Christian Schaffner (University of Amsterdam, CWI)

arXiv:1201.0849, Phys. Rev. Lett. 109, 160501 (2012)

thanks for reuse of slides :)

Motivation
ideally

Motivation
ideally

f

Motivation
ideally

fx y

Motivation
ideally

fx y
f(x,y)f(x,y)

Motivation
ideally

fx y
f(x,y)f(x,y)

e.g.: Yao‘s millionaires’ problem: ≤

Motivation
ideally

reality

fx y
f(x,y)f(x,y)

e.g.: Yao‘s millionaires’ problem: ≤

Motivation
ideally

reality

fx y
f(x,y)f(x,y)

e.g.: Yao‘s millionaires’ problem: ≤

Motivation
ideally

reality

fx y
f(x,y)f(x,y)

x y

e.g.: Yao‘s millionaires’ problem: ≤

Motivation
ideally

reality

fx y
f(x,y)f(x,y)

⋮

x y

e.g.: Yao‘s millionaires’ problem: ≤

quantum communication

Motivation
ideally

reality

fx y
f(x,y)f(x,y)

f(x,y)f(x,y)
⋮

x y

e.g.: Yao‘s millionaires’ problem: ≤

quantum communication

Motivation
ideally

reality

fx y
f(x,y)f(x,y)

f(x,y)f(x,y)
⋮

x y

e.g.: Yao‘s millionaires’ problem: ≤

quantum communication

x=?

Secure Function Evaluation
ideally

fx y
f(x,y)f(x,y)

Secure Function Evaluation
ideally

fx y
f(x,y)f(x,y)

goal: come up with protocols that are

⋮

Secure Function Evaluation
ideally

fx y
f(x,y)f(x,y)

goal: come up with protocols that are

correct

⋮

Secure Function Evaluation
ideally

fx y
f(x,y)f(x,y)

goal: come up with protocols that are

correct

secure against dishonest Alice

⋮

Secure Function Evaluation
ideally

fx y
f(x,y)f(x,y)

goal: come up with protocols that are

correct

secure against dishonest Alice

secure against dishonest Bob ⋮

Main Result
Theorem: If a quantum protocol for the evaluation of f is
correct and perfectly secure against Bob, then Alice can
completely break the protocol.

x y

Main Result
Theorem: If a quantum protocol for the evaluation of f is
correct and perfectly secure against Bob, then Alice can
completely break the protocol.

⋮

x y

Main Result
Theorem: If a quantum protocol for the evaluation of f is
correct and perfectly secure against Bob, then Alice can
completely break the protocol.

f(x,y)f(x,y)
⋮

x y

Main Result
Theorem: If a quantum protocol for the evaluation of f is
correct and perfectly secure against Bob, then Alice can
completely break the protocol.

f(x,y)f(x,y)
⋮

x y

Main Result
Theorem: If a quantum protocol for the evaluation of f is
correct and perfectly secure against Bob, then Alice can
completely break the protocol.

f(x,y)f(x,y)
⋮

x y

dishonest Bob learns no
more about x than f(x,y).

Main Result
Theorem: If a quantum protocol for the evaluation of f is
correct and perfectly secure against Bob, then Alice can
completely break the protocol.

f(x,y)f(x,y)
⋮

x y

Main Result
Theorem: If a quantum protocol for the evaluation of f is
correct and perfectly secure against Bob, then Alice can
completely break the protocol.

f(x,y)f(x,y)
⋮

x y

Main Result
Theorem: If a quantum protocol for the evaluation of f is
correct and perfectly secure against Bob, then Alice can
completely break the protocol.

f(x,y)f(x,y)
⋮

x y

dishonest Alice can compute
f(x,y) not just for one x, but for all x.

Equivalently, she obtains y‘ s.th.
f(x,y‘)=f(x,y) for all x

Main Result
Theorem: If a quantum protocol for the evaluation of f is
correct and perfectly secure against Bob, then Alice can
completely break the protocol.

Theorem: If a quantum protocol for the evaluation of f is
ε-correct and ε-secure against Bob, then Alice can break
the protocol with probability 1-O(ε).

f(x,y)f(x,y)
⋮

x y

dishonest Alice can compute
f(x,y) not just for one x, but for all x.

Equivalently, she obtains y‘ s.th.
f(x,y‘)=f(x,y) for all x

History

History
∼1970: Conjugate Coding [Wiesner]

History
∼1970: Conjugate Coding [Wiesner]
1984: Quantum Key Distribution [Bennett Brassard]
Bit Commitment and Oblivious Transfer?

History
∼1970: Conjugate Coding [Wiesner]
1984: Quantum Key Distribution [Bennett Brassard]
Bit Commitment and Oblivious Transfer?
1997: No Bit Commitment [Lo Chau, Mayers]

History
∼1970: Conjugate Coding [Wiesner]
1984: Quantum Key Distribution [Bennett Brassard]
Bit Commitment and Oblivious Transfer?
1997: No Bit Commitment [Lo Chau, Mayers]
1997: No One-Sided Secure Computation [Lo]

History
∼1970: Conjugate Coding [Wiesner]
1984: Quantum Key Distribution [Bennett Brassard]
Bit Commitment and Oblivious Transfer?
1997: No Bit Commitment [Lo Chau, Mayers]
1997: No One-Sided Secure Computation [Lo]
2007, 2009: Quantum Protocols leak more than allowed
[Colbeck], [Salvail Sotakova Schaffner]

History
∼1970: Conjugate Coding [Wiesner]
1984: Quantum Key Distribution [Bennett Brassard]
Bit Commitment and Oblivious Transfer?
1997: No Bit Commitment [Lo Chau, Mayers]
1997: No One-Sided Secure Computation [Lo]
2007, 2009: Quantum Protocols leak more than allowed
[Colbeck], [Salvail Sotakova Schaffner]
this work: Complete Insecurity of Two-Sided Secure
Function Evaluation (also with finite error)

Talk Outline

Talk Outline

explain Lo’s impossibility proof

Talk Outline

explain Lo’s impossibility proof
problem with two-sided computation

Talk Outline

explain Lo’s impossibility proof
problem with two-sided computation
security definition

Talk Outline

explain Lo’s impossibility proof
problem with two-sided computation
security definition
impossibility proof

Talk Outline

explain Lo’s impossibility proof
problem with two-sided computation
security definition
impossibility proof
conclusion

Theorem: If a quantum protocol for the one-sided evaluation
of f is correct and perfectly secure against Bob, then Alice
can completely break the protocol.

x y

Lo‘s Result

Theorem: If a quantum protocol for the one-sided evaluation
of f is correct and perfectly secure against Bob, then Alice
can completely break the protocol.

⋮

x y

Lo‘s Result

Theorem: If a quantum protocol for the one-sided evaluation
of f is correct and perfectly secure against Bob, then Alice
can completely break the protocol.

f(x,y)
⋮

x y

Lo‘s Result

⊥

Theorem: If a quantum protocol for the one-sided evaluation
of f is correct and perfectly secure against Bob, then Alice
can completely break the protocol.

f(x,y)
⋮

x y

Lo‘s Result

⊥
dishonest Bob learns

nothing about x

Theorem: If a quantum protocol for the one-sided evaluation
of f is correct and perfectly secure against Bob, then Alice
can completely break the protocol.

f(x,y)
⋮

x y

Lo‘s Result

⊥

Theorem: If a quantum protocol for the one-sided evaluation
of f is correct and perfectly secure against Bob, then Alice
can completely break the protocol.

f(x,y)
⋮

x y

Lo‘s Result

⊥

Theorem: If a quantum protocol for the one-sided evaluation
of f is correct and perfectly secure against Bob, then Alice
can completely break the protocol.

f(x,y)
⋮

x y

dishonest Alice can compute f(x,y)
not just for one x, but for all x.

Lo‘s Result

⊥

Theorem: If a quantum protocol for the one-sided evaluation
of f is correct and perfectly secure against Bob, then Alice
can completely break the protocol.

f(x,y)
⋮

x y

dishonest Alice can compute f(x,y)
not just for one x, but for all x.

Lo‘s Result

proof fails for two-sided computations

⊥

Theorem: If a quantum protocol for the one-sided evaluation
of f is correct and perfectly secure against Bob, then Alice
can completely break the protocol.

f(x,y)
⋮

x y

dishonest Alice can compute f(x,y)
not just for one x, but for all x.

Lo‘s Result

proof fails for two-sided computations
error increases with number of inputs

⊥

x y
Lo‘s Proof

⋮

x y
Lo‘s Proof

only Alice gets output

⊥f(x,y)

⋮

x y
Lo‘s Proof

only Alice gets output
wlog measurements are moved to the end, final state is pure

⊥f(x,y)

⋮

x y

|ψx,y�AB

Lo‘s Proof

only Alice gets output
wlog measurements are moved to the end, final state is pure

⊥f(x,y)

⋮

x

|ψx,y�AB

all y

Lo‘s Proof

only Alice gets output
wlog measurements are moved to the end, final state is pure
dishonest Bob inputs superposition

⊥f(x,y)

⋮

x

|ψx,y�AB

|ψx0�AB =
�

y

|ψx0,y�AB1
|y�B2

all y

Lo‘s Proof

only Alice gets output
wlog measurements are moved to the end, final state is pure
dishonest Bob inputs superposition

⊥f(x,y)

⋮

x

|ψx,y�AB

|ψx0�AB =
�

y

|ψx0,y�AB1
|y�B2

trA(|ψx0��ψx0 |AB) = ρx0
B = ρx1

B = trA(|ψx1��ψx1 |AB)

security against dishonest Bob:

all y

Lo‘s Proof

⊥f(x,y)

⋮

x y

|ψx,y�AB

trA(|ψx0��ψx0 |AB) = ρx0
B = ρx1

B = trA(|ψx1��ψx1 |AB)

security against dishonest Bob:

Lo‘s Proof

⊥f(x,y)

⋮

x y

|ψx,y�AB

trA(|ψx0��ψx0 |AB) = ρx0
B = ρx1

B = trA(|ψx1��ψx1 |AB)

security against dishonest Bob:

implies existence of cheating unitary for Alice: (not dep on y)

(UA ⊗ IB) |ψx0�AB = |ψx1�AB

Lo‘s Proof

⊥f(x,y)

⋮

x y

|ψx,y�AB

trA(|ψx0��ψx0 |AB) = ρx0
B = ρx1

B = trA(|ψx1��ψx1 |AB)

security against dishonest Bob:

implies existence of cheating unitary for Alice: (not dep on y)

(UA ⊗ IB) |ψx0�AB = |ψx1�AB

Lo‘s Proof

|ψx0�AB =
�

y

|ψx0,y�AB1
|y�B2

⊥f(x,y)

⋮

x y

|ψx,y�AB

trA(|ψx0��ψx0 |AB) = ρx0
B = ρx1

B = trA(|ψx1��ψx1 |AB)

security against dishonest Bob:

implies existence of cheating unitary for Alice: (not dep on y)

(UA ⊗ IB) |ψx0�AB = |ψx1�AB

(UA ⊗ IB) |ψx0,y�AB = |ψx1,y�AB

Lo‘s Proof

|ψx0�AB =
�

y

|ψx0,y�AB1
|y�B2

⊥f(x,y)

⋮

y

|ψx,y�AB

trA(|ψx0��ψx0 |AB) = ρx0
B = ρx1

B = trA(|ψx1��ψx1 |AB)

security against dishonest Bob:

implies existence of cheating unitary for Alice: (not dep on y)

x0

(UA ⊗ IB) |ψx0�AB = |ψx1�AB

(UA ⊗ IB) |ψx0,y�AB = |ψx1,y�AB

Lo‘s Proof

|ψx0�AB =
�

y

|ψx0,y�AB1
|y�B2

⊥f(x,y)

⋮

y

|ψx,y�AB

trA(|ψx0��ψx0 |AB) = ρx0
B = ρx1

B = trA(|ψx1��ψx1 |AB)

security against dishonest Bob:

dishonest Alice: input x0 -> f(x0,y), switches to x1 -> f(x1,y) ...

implies existence of cheating unitary for Alice: (not dep on y)

x0

(UA ⊗ IB) |ψx0�AB = |ψx1�AB

(UA ⊗ IB) |ψx0,y�AB = |ψx1,y�AB

Lo‘s Proof

|ψx0�AB =
�

y

|ψx0,y�AB1
|y�B2

⊥

⋮

y

|ψx,y�AB

trA(|ψx0��ψx0 |AB) = ρx0
B = ρx1

B = trA(|ψx1��ψx1 |AB)

security against dishonest Bob:

dishonest Alice: input x0 -> f(x0,y), switches to x1 -> f(x1,y) ...

implies existence of cheating unitary for Alice: (not dep on y)

x0

f(x0,y), f(x1,y), ...

(UA ⊗ IB) |ψx0�AB = |ψx1�AB

(UA ⊗ IB) |ψx0,y�AB = |ψx1,y�AB

Lo‘s Proof

f(x,y)

|ψx0�AB =
�

y

|ψx0,y�AB1
|y�B2

⊥

⋮

y

|ψx,y�AB

trA(|ψx0��ψx0 |AB) = ρx0
B = ρx1

B = trA(|ψx1��ψx1 |AB)

security against dishonest Bob:

dishonest Alice: input x0 -> f(x0,y), switches to x1 -> f(x1,y) ...

implies existence of cheating unitary for Alice: (not dep on y)

x0

f(x0,y), f(x1,y), ...

(UA ⊗ IB) |ψx0�AB = |ψx1�AB

(UA ⊗ IB) |ψx0,y�AB = |ψx1,y�AB

Lo‘s Proof

f(x,y)

|ψx0�AB =
�

y

|ψx0,y�AB1
|y�B2

⋮

x

|ψx,y�AB

trA(|ψx0��ψx0 |AB) = ρx0
B = ρx1

B = trA(|ψx1��ψx1 |AB)

security against dishonest Bob without output:

Lo‘s Proof
x = ?

f(x,y) ⊥

⋮

x

|ψx,y�AB

trA(|ψx0��ψx0 |AB) = ρx0
B = ρx1

B = trA(|ψx1��ψx1 |AB)

security against dishonest Bob without output:

Lo‘s Proof
x = ?

f(x,y) ⊥

crucial step!

f(x,y)

⋮

x

|ψx,y�AB

trA(|ψx0��ψx0 |AB) = ρx0
B = ρx1

B = trA(|ψx1��ψx1 |AB)

security against dishonest Bob without output:

Lo‘s Proof
x = ?

f(x,y)

what if Bob has f(x,y) ? In general
crucial step!

ρx0
B �= ρx1

B

f(x,y)

⋮

x

|ψx,y�AB

trA(|ψx0��ψx0 |AB) = ρx0
B = ρx1

B = trA(|ψx1��ψx1 |AB)

security against dishonest Bob without output:

Lo‘s Proof
x = ?

f(x,y)

what if Bob has f(x,y) ? In general
precise formalisation of
“not learning more about x than f(x,y)” ?

crucial step!
ρx0
B �= ρx1

B

f(x,y)

⋮

x

|ψx,y�AB

trA(|ψx0��ψx0 |AB) = ρx0
B = ρx1

B = trA(|ψx1��ψx1 |AB)

security against dishonest Bob without output:

Lo‘s Proof
x = ?

f(x,y)

what if Bob has f(x,y) ? In general
precise formalisation of
“not learning more about x than f(x,y)” ?

use the real/ideal paradigm

crucial step!
ρx0
B �= ρx1

B

Informal Security Definition
we want

Informal Security Definition
we want

fx y
f(x,y)f(x,y)

Informal Security Definition
we want

we have

fx y
f(x,y)f(x,y)

f(x,y)f(x,y)
⋮

x y

Informal Security Definition
we want

we have

IDEAL
fx y

f(x,y)f(x,y)

f(x,y)f(x,y)
⋮

x y

Informal Security Definition
we want

we have

IDEAL

REAL

fx y
f(x,y)f(x,y)

f(x,y)f(x,y)
⋮

x y

Informal Security Definition
we want

we have

IDEAL

REAL

fx y
f(x,y)f(x,y)

f(x,y)f(x,y)
⋮

x y

security holds if REAL looks like IDEAL to the outside
world

f
⋮

security holds if REAL looks like IDEAL to the outside world

Formal Security Definition

x y

f(x,y)f(x,y)

f
⋮

security holds if REAL looks like IDEAL to the outside world

Formal Security Definition

x y

f(x,y)f(x,y)

f
⋮

security holds if REAL looks like IDEAL to the outside world

Formal Security Definition

x y

f(x,y)f(x,y)

f
⋮

security holds if REAL looks like IDEAL to the outside world

Formal Security Definition

x y

f(x,y)f(x,y)

f
⋮

security holds if REAL looks like IDEAL to the outside world

Formal Security Definition

x y

f(x,y)f(x,y)

protocol is secure against dishonest Bob if

f
⋮

security holds if REAL looks like IDEAL to the outside world

Formal Security Definition

x y

f(x,y)f(x,y)

protocol is secure against dishonest Bob if
for every input distribution P(x,y), i.e.

f
⋮

security holds if REAL looks like IDEAL to the outside world

Formal Security Definition

x y

f(x,y)f(x,y)

ρXY =
�

x,y

P (x, y)|x��x|A|y��y|B

protocol is secure against dishonest Bob if
for every input distribution P(x,y), i.e.

f
⋮

security holds if REAL looks like IDEAL to the outside world

Formal Security Definition

x y

f(x,y)f(x,y)

ρXY =
�

x,y

P (x, y)|x��x|A|y��y|B

IDEALREAL
ρXY ρXY

protocol is secure against dishonest Bob if
for every input distribution P(x,y), i.e.
for every dishonest Bob B in the real world,

f
⋮

security holds if REAL looks like IDEAL to the outside world

Formal Security Definition

x y

f(x,y)f(x,y)

ρXY =
�

x,y

P (x, y)|x��x|A|y��y|B

IDEALREAL
ρXY ρXY

protocol is secure against dishonest Bob if
for every input distribution P(x,y), i.e.
for every dishonest Bob B in the real world,
there exists a dishonest Bob B in the ideal world

f
⋮

security holds if REAL looks like IDEAL to the outside world

Formal Security Definition

x y

f(x,y)f(x,y)

ρXY =
�

x,y

P (x, y)|x��x|A|y��y|B

IDEALREAL
ρXY ρXY

protocol is secure against dishonest Bob if
for every input distribution P(x,y), i.e.
for every dishonest Bob B in the real world,
there exists a dishonest Bob B in the ideal world
such that

f
⋮

security holds if REAL looks like IDEAL to the outside world

Formal Security Definition

x y

f(x,y)f(x,y)

ρXY =
�

x,y

P (x, y)|x��x|A|y��y|B

IDEALREAL
ρXY ρXY

protocol is secure against dishonest Bob if
for every input distribution P(x,y), i.e.
for every dishonest Bob B in the real world,
there exists a dishonest Bob B in the ideal world
such that

f
⋮

security holds if REAL looks like IDEAL to the outside world

Formal Security Definition

x y

f(x,y)f(x,y)

ρXY =
�

x,y

P (x, y)|x��x|A|y��y|B

REAL(ρXY) IDEAL(ρXY)

REAL(ρXY) = IDEAL(ρXY)

IDEALREAL
ρXY ρXY

protocol is secure against dishonest Bob if
for every input distribution P(x,y), i.e.
for every dishonest Bob B in the real world,
there exists a dishonest Bob B in the ideal world
such that

f
⋮

security holds if REAL looks like IDEAL to the outside world

Formal Security Definition

x y

f(x,y)f(x,y)

ρXY =
�

x,y

P (x, y)|x��x|A|y��y|B

also relative to
purification

REAL(ρXY) IDEAL(ρXY)

REAL(ρXY) = IDEAL(ρXY)

IDEALREAL
ρXY ρXY

IDEAL

f
⋮

security holds if REAL looks like IDEAL to the outside world

REAL
x y

f(x,y)f(x,y)

Security against Bob => Insecurity against Alice

Proof of Insecurity

IDEAL

f
⋮

security holds if REAL looks like IDEAL to the outside world

REAL
x y

f(x,y)f(x,y)

Security against Bob => Insecurity against Alice

state after the real protocol if both parties
play “dishonestly” by purifying their actions

|ψ�ApABBp

Proof of Insecurity

IDEAL

f
⋮

security holds if REAL looks like IDEAL to the outside world

REAL
x y

f(x,y)f(x,y)

Security against Bob => Insecurity against Alice

state after the real protocol if both parties
play “dishonestly” by purifying their actions

|ψ�ApABBp

Proof of Insecurity

IDEAL

f
⋮

security holds if REAL looks like IDEAL to the outside world

REAL
x y

f(x,y)f(x,y)

Security against Bob => Insecurity against Alice

state after the real protocol if both parties
play “dishonestly” by purifying their actions

trAp

|ψ�ApABBp

ρABBp= σABBp = trY (σABBpY)

Proof of Insecurity

IDEAL

f
⋮

security holds if REAL looks like IDEAL to the outside world

REAL
x y

f(x,y)f(x,y)

Security against Bob => Insecurity against Alice

state after the real protocol if both parties
play “dishonestly” by purifying their actions

trAp

|ψ�ApABBp

ρABBp= σABBp = trY (σABBpY)

Proof of Insecurity

IDEAL

f
⋮

security holds if REAL looks like IDEAL to the outside world

REAL
x y

f(x,y)f(x,y)

Security against Bob => Insecurity against Alice

state after the real protocol if both parties
play “dishonestly” by purifying their actions

trAp

|ψ�ApABBp

ρABBp= σABBp = trY (σABBpY)

Proof of Insecurity

IDEAL

f
⋮

security holds if REAL looks like IDEAL to the outside world

REAL
x y

f(x,y)f(x,y)

Security against Bob => Insecurity against Alice

state after the real protocol if both parties
play “dishonestly” by purifying their actions

trAp

|ψ�ApABBp

ρABBp= σABBp = trY (σABBpY)

Proof of Insecurity

IDEAL

f
⋮

security holds if REAL looks like IDEAL to the outside world

REAL
x y

f(x,y)f(x,y)

Security against Bob => Insecurity against Alice

state after the real protocol if both parties
play “dishonestly” by purifying their actions

trAp

|ψ�ApABBp

ρABBp= σABBp = trY (σABBpY)

|φ�ABBpY P

purification

Proof of Insecurity

IDEAL

f
⋮

security holds if REAL looks like IDEAL to the outside world

REAL
x y

f(x,y)f(x,y)

trAp

|ψ�ApABBp

purification
ρABBp= σABBp = trY (σABBpY)

|φ�ABBpY P

Proof of Insecurity

IDEAL

f
⋮

security holds if REAL looks like IDEAL to the outside world

REAL
x y

f(x,y)f(x,y)

trAp

|ψ�ApABBp

purification

by Uhlmann’s theorem: there exists a cheating unitary U such
that

ρABBp= σABBp = trY (σABBpY)

|φ�ABBpY P

UAp→Y P |ψ�ApABBp
= |φ�ABBpY P

Proof of Insecurity

IDEAL

f
⋮

REAL
x y

f(x,y)f(x,y)

|ψ�ApABBp |φ�ABBpY P

Proof of Insecurity

IDEAL

f
⋮

REAL
x y

f(x,y)f(x,y)

|ψ�ApABBp |φ�ABBpY P

UAp→Y P |ψ�ApABBp

= |φ�Y PABBp

Proof of Insecurity

IDEAL

f
⋮

REAL
x y

f(x,y)f(x,y)

|ψ�ApABBp |φ�ABBpY P

measure Y

y‘

UAp→Y P |ψ�ApABBp

= |φ�Y PABBp

Proof of Insecurity

IDEAL

f
⋮

REAL
x y

f(x,y)f(x,y)

|ψ�ApABBp |φ�ABBpY P

trBp

y

measure Y

y‘

UAp→Y P |ψ�ApABBp

= |φ�Y PABBp

Proof of Insecurity

IDEAL

f
⋮

REAL
x y

f(x,y)f(x,y)

|ψ�ApABBp |φ�ABBpY P
trBp

y

measure Y

y‘

UAp→Y P |ψ�ApABBp

= |φ�Y PABBp

Proof of Insecurity

IDEAL

f
⋮

REAL
x y

f(x,y)f(x,y)

|ψ�ApABBp |φ�ABBpY P

1. Alice plays „dishonestly“ by
purifying, Bob plays honestly

trBp

y

measure Y

y‘

UAp→Y P |ψ�ApABBp

= |φ�Y PABBp

Proof of Insecurity

IDEAL

f
⋮

REAL
x y

f(x,y)f(x,y)

|ψ�ApABBp |φ�ABBpY P

1. Alice plays „dishonestly“ by
purifying, Bob plays honestly

2.Alice applies cheating unitary U

trBp

y

measure Y

y‘

UAp→Y P |ψ�ApABBp

= |φ�Y PABBp

Proof of Insecurity

IDEAL

f
⋮

REAL
x y

f(x,y)f(x,y)

|ψ�ApABBp |φ�ABBpY P

1. Alice plays „dishonestly“ by
purifying, Bob plays honestly

2.Alice applies cheating unitary U
3.measures register Y to obtain y‘.

trBp

y

measure Y

y‘

UAp→Y P |ψ�ApABBp

= |φ�Y PABBp

Proof of Insecurity

IDEAL

f
⋮

REAL
x y

f(x,y)f(x,y)

|ψ�ApABBp |φ�ABBpY P

1. Alice plays „dishonestly“ by
purifying, Bob plays honestly

2.Alice applies cheating unitary U
3.measures register Y to obtain y‘.
4. since she only used purified strategy,

correctness implies:
for all x: f(x,y‘) = f(x,y).

trBp

y

measure Y

y‘

UAp→Y P |ψ�ApABBp

= |φ�Y PABBp

Proof of Insecurity

IDEAL

f
⋮

REAL
x y

f(x,y)f(x,y)

|ψ�ApABBp |φ�ABBpY P

1. Alice plays „dishonestly“ by
purifying, Bob plays honestly

2.Alice applies cheating unitary U
3.measures register Y to obtain y‘.
4. since she only used purified strategy,

correctness implies:
for all x: f(x,y‘) = f(x,y).

trBp

y

measure Y

y‘

UAp→Y P |ψ�ApABBp

= |φ�Y PABBp

Proof of Insecurity

Error Case
⋮

x y

Error Case

our results also hold for ε-correctness and ε-security

⋮

x y

Error Case

our results also hold for ε-correctness and ε-security

Alice gets a value y’ with distribution Q(y’|y) such that
for all x: Pry’[f(x,y)=f(x,y’)] ≥ 1-O(ε)

⋮

x y

Error Case

our results also hold for ε-correctness and ε-security

Alice gets a value y’ with distribution Q(y’|y) such that
for all x: Pry’[f(x,y)=f(x,y’)] ≥ 1-O(ε)

⋮

x y

optimal:
disjointnes

Error Case

our results also hold for ε-correctness and ε-security

Alice gets a value y’ with distribution Q(y’|y) such that
for all x: Pry’[f(x,y)=f(x,y’)] ≥ 1-O(ε)

in contrast to Lo’s proof where the overall error
increases linearly with the number of inputs.

⋮

x y

optimal:
disjointnes

Error Case

our results also hold for ε-correctness and ε-security

Alice gets a value y’ with distribution Q(y’|y) such that
for all x: Pry’[f(x,y)=f(x,y’)] ≥ 1-O(ε)

in contrast to Lo’s proof where the overall error
increases linearly with the number of inputs.

crucial use of von Neumann’s minimax theorem

⋮

x y

motivated from strong no bit commitment result
[D’Ariano Kretschmann Schlingemann Werner, 2007]

optimal:
disjointnes

Conclusion & Open Problems
x y

f(x,y)f(x,y)

Conclusion & Open Problems

secure two-party computation not possible

x y
f(x,y)f(x,y)

Conclusion & Open Problems

secure two-party computation not possible

x y
f(x,y)

Conclusion & Open Problems

secure two-party computation not possible

x y
f(x,y) g(x,y)

Conclusion & Open Problems

secure two-party computation not possible

weaker security definition?

x y
f(x,y) g(x,y)

Conclusion & Open Problems

secure two-party computation not possible

weaker security definition?

randomized functions?

x y
f(x,y) g(x,y)

Conclusion & Open Problems

secure two-party computation not possible

weaker security definition?

randomized functions?

Thank you!

x y
f(x,y) g(x,y)

