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o this work: of Two-Sided Secure
Function Evaluation (also with finite error)
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@ our results also hold for e-correctness and

@ Alice gets a value . with distribution Q( ly) such that
for all x: Pr [ f(x,y)=Ff(x, ) ] 2 1-O(¢) | |

@ in contrast to Los proof where the overall error
increases linearly with the number of inputs.

@ crucial use of

motivated from strong 1o bit commitment result
[D’Ariano Kretschmann Schlingemann Werner, 2007]
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Thank youl!




