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History
∼1970: Conjugate Coding [Wiesner]
1984: Quantum Key Distribution [Bennett Brassard]
Bit Commitment and Oblivious Transfer?
1997: No Bit Commitment [Lo Chau, Mayers]
1997: No One-Sided Secure Computation [Lo]
2007, 2009: Quantum Protocols leak more than allowed 
[Colbeck], [Salvail Sotakova Schaffner]
this work: Complete Insecurity of Two-Sided Secure 
Function Evaluation (also with finite error)
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dishonest Alice can compute f(x,y) 
not just for one x, but for all x.

Lo‘s Result

proof fails for two-sided computations
error increases with number of inputs
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our results also hold for ε-correctness and ε-security

Alice gets a value y’ with distribution Q(y’|y) such that
for all x: Pry’[ f(x,y)=f(x,y’) ] ≥ 1-O(ε)

in contrast to Lo’s proof where the overall error 
increases linearly with the number of inputs.

crucial use of von Neumann’s minimax theorem

⋮

x y

motivated from strong no bit commitment result
[D’Ariano Kretschmann Schlingemann Werner, 2007]

optimal: 
disjointnes
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Conclusion & Open Problems

secure two-party computation not possible

weaker security definition?

randomized functions?

Thank you!

x y
f(x,y) g(x,y)


