

Everything You Always Wanted to Know About LOCC

(But Were Afraid to Ask)

Eric Chitambar

Debbie Leung

Laura Mančinska

QIP 2013, Beijing

January 21, 2013

Maris Ozols

Andreas Winter

arXiv:1210.4583

• 1991 - Peres and Wootters introduce the LOCC setting:¹

$$|\psi_1\rangle = |s_0\rangle_A \otimes |s_0\rangle_B$$

$$|\psi_2\rangle = |s_1\rangle_A \otimes |s_1\rangle_B$$

$$|\psi_3\rangle = |s_2\rangle_A \otimes |s_2\rangle_B$$

"Double Trine Ensemble"

Goal: Alice and Bob attempt to identify their shared state.

- Results: (1) Alice and Bob acting separately apparently reduces success probability compared to joint action.
 - (2) An adaptive, multiple-round strategy seems optimal.

• 1999 - Bennett et al. show "non-locality without entanglement" ².

- States can be perfectly distinguished by product state projectors.
- However the states *cannot* be distinguished perfectly by LOCC.
 - Cannot be distinguished "asymptotocially", or with ϵ error probability ^{3,4}.

$$|0\rangle$$
 $|1\rangle$ $|2\rangle$ Bob

$$|\psi_0\rangle = |1\rangle \otimes |1\rangle$$

$$|\psi_1^{\pm}\rangle = \frac{1}{\sqrt{2}}|0\rangle \otimes (|1\rangle \pm |2\rangle)$$

$$|\psi_2^{\pm}\rangle = \frac{1}{\sqrt{2}}(|0\rangle \pm |1\rangle) \otimes |0\rangle$$

$$|\psi_3^{\pm}\rangle = \frac{1}{\sqrt{2}}|2\rangle \otimes (|0\rangle \pm |1\rangle)$$

$$|\psi_4^{\pm}\rangle = \frac{1}{\sqrt{2}}(|1\rangle \pm |2\rangle) \otimes |2\rangle$$

• 2011 - The task of tripartite "random distillation" is shown to be achievable by LOCC *only* asymmptotically⁵.

• Modify the task by reducing the distilled entanglement⁶.

Asymptotic in round number

Defining the Class of LOCC

• A general LOCC protocol:

Defining the Class of LOCC

- We identify LOCC protocols as quantum instruments, or sequences of CP maps $\mathfrak{J} = (\mathcal{E}_1, \mathcal{E}_2, ...)$ built up in this manner.
- LOCC_r denotes the set of all instruments realizable in r rounds.
- LOCC_N := \cup_r LOCC_r. \longleftarrow Bounded-round protocols
- A distance between two instruments $\mathfrak{J} = (\mathcal{E}_1, ..., \mathcal{E}_k)$ and $\tilde{\mathfrak{J}} = (\mathcal{F}_1, ..., \mathcal{F}_k)$ is given by $||\mathfrak{J}, \tilde{\mathfrak{J}}||_{\diamond} := \sum_{j=1}^k ||\mathcal{E}_j \mathcal{F}_j||_{\diamond}$.
- LOCC is the union of LOCC $_{\mathbb{N}}$ and the limit points of all unbounded-round protocols (that converge).
- $\overline{LOCC_{\mathbb{N}}}$ denotes the closure of $LOCC_{\mathbb{N}}$.

LOCC Instruments

What classes of LOCC protocols are closed?

Why Bounded-Round Closure is Perhaps not Obvious

Bounded-Round Compactness

Lemma. For an N-partite system of total dimension D, suppose that $\mathfrak{J} = (\mathcal{E}_1, \dots, \mathcal{E}_m)$ is an instrument in LOCC_r.

Then there exists an r-round protocol that implements $(\mathcal{E}_1, \ldots, \mathcal{E}_m)$ such that each instrument in round $1 \leq l \leq r$ consists of no more than $D^{4(r-l+1)}$ maps.

Effective "Choi Matrix" Ω for LOCC Protocol

$$ho \left\{egin{array}{cccc} A_0 & & & & & & & \\ B_0 & & & & & & & \\ \end{array}
ight.$$

Carathéodory's Theorem:

Let S be a subset of \mathbb{R}^n and conv(S) its convex hull. Then any $x \in conv(S)$ can be expressed as a convex combination of at most n+1 elements of S.

Bipartite Sequences with Unbounded Rounds

• Borrow from the *tripartite* random distillation scheme.

$$M_0 = \begin{pmatrix} \sqrt{1 - \epsilon} & 0 \\ 0 & 1 \end{pmatrix} \qquad M_1 = \begin{pmatrix} \sqrt{\epsilon} & 0 \\ 0 & 0 \end{pmatrix}$$

- Alice and Bob both measure $\{M_0, M_1\}$.
- If either of them obtains outcome "0," they halt. Otherwise, they repeat the measurement.
- They repeat this for ν iterations.
- There are four possible outcomes per iteration, and we coarse-grain over all the interations:

Two parameters:
$$\mathfrak{J}_{\nu}(\epsilon) = (\mathcal{E}_{\nu 00}, \mathcal{E}_{\nu 01}, \mathcal{E}_{\nu 10}, \mathcal{E}_{\nu 11}).$$

Bipartite Sequences with Unbounded Rounds

$$\mathfrak{J}_{\nu}(\epsilon) = (\mathcal{E}_{\nu 00}, \mathcal{E}_{\nu 01}, \mathcal{E}_{\nu 10}, \mathcal{E}_{\nu 11}).$$

- Letting $\nu \to \infty$ gives a sequence (indexed by ϵ) of unbounded round protocols.
- Letting $\epsilon \to 0$ gives the limit instrument of this sequence.
- The three element limit instrument:

$$\mathcal{E}_{00}(\rho) = |11\rangle\langle 11|\rho|11\rangle\langle 11|, \qquad T_1 = \sqrt{1/3} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\mathcal{E}_{01}(\rho) = \sum_{i=1}^{2} (T_i \otimes |0\rangle\langle 0|)\rho(T_i^{\dagger} \otimes |0\rangle\langle 0|), \qquad T_2 = \sqrt{1/3} \begin{pmatrix} \sqrt{1/2} & 0 \\ 0 & \sqrt{2} \end{pmatrix}$$

$$\mathcal{E}_{10}(\rho) = \sum_{i=1}^{2} (|0\rangle\langle 0| \otimes T_i)\rho(|0\rangle\langle 0| \otimes T_i^{\dagger})$$

Bipartite Sequences with Unbounded Rounds

- We embed the protocol into tripartite system where Alice and Bob are entangled with Charlie.
- Charlie acts trivially.

$$|W\rangle = \sqrt{1/3}(|100\rangle + |010\rangle + |001\rangle)$$

$$\omega = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1/3 & 4/9 & 0 \\ 0 & 4/9 & 2/3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

This transformation is impossible!

Conclusions and Open Questions

- The set of *n*-outcome instruments in LOCC_r is compact.
- For bipartite systems:

- If we restrict attention only to POVMs, might it be that $LOCC = \overline{LOCC}$?
- For LOCC protocols with unbounded rounds, does there exist a relationship between round number and rate of convergence?

Thank You!

References

- 1 Peres & Wootters *Phys. Rev. Lett.* **66,** 1119 (1991).
- 2 Bennett *et al. Phys. Rev. A* **59**, 1070 (1999).
- 3 Kleinmann *et al. Phys. Rev. A* **84**, 042326 (2011).
- 4 Childs et al. arXiv:1206.5822 (2012).
- 5 Chitambar et al. Phys. Rev. Lett. **108**, 240504 (2012).
- 6 Chitambar Phys. Rev. Lett. 107, 190502 (2011).

Random Concurrence Distillation

• Optimize:

$$\langle C_{tot} \rangle = \sum_{i} p_i^{(AC)} C(\varphi_i^{(AC)}) + \sum_{i} p_i^{(BC)} C(\varphi_i^{(BC)})$$

• Result:

$$< C_{tot} > \le C(W') := 2\sqrt{x_A x_B} + x_C \sqrt{\frac{2}{3} \frac{x_A}{x_B}}$$
Entanglement Monotone!

Random Concurrence Distillation

• The limit instrument $(\mathcal{E}_{00}, \mathcal{E}_{01}, \mathcal{E}_{10})$ transforms:

$$|W\rangle\langle W| \longrightarrow \begin{cases} \omega^{(AC)} \otimes |0\rangle\langle 0|^{(B)} & \text{w. prob. } 1/2, \\ |0\rangle\langle 0|^{(A)} \otimes \omega^{(BC)} & \text{w. prob. } 1/2, \end{cases} \qquad \omega = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1/3 & 4/9 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

• For $\rho \in \text{Mixed W-class}$,

$$\hat{\mathcal{C}}(\rho) = \min_{p_i, |\phi_i\rangle} \sum_{p_i} p_i \, \mathcal{C}(\phi_i)$$
 is an entanglement monotone.

- Initial concurrence: $\hat{\mathcal{C}}(|W\rangle\langle W|) = 8/9$.
- Final concurrence: $\hat{C}(\omega) = 8/9$.

ullet Therefore, the transformation is impossible since $\hat{\mathcal{C}}$ strictly decreases upon first non-trivial measurement.