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Background & Motivation — The Need
for Precise Definitions

e 1991 - Peres and Wootters introduce the LOCC setting:!
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“Double Trine Ensemble”

20 ¥ |-
Goal: Alice and Bob attempt to
identify their shared state.

Results: (1) Alice and Bob acting separately apparently reduces success
probability compared to joint action.
(2) An adaptive, multiple-round strategy seems optimal.



Background & Motivation — The Need
for Precise Definitions

e 1999 - Bennett et al. show “non-locality without entanglement”?.

o) = 1) ® [1)
e States can be perfectly distinguished N 1
by product state projectors. 1) = ﬁ|o> ® (1) £12))
q
S o.Hf)weV.er the states cannot be ¢2i> _(|0> 1)) ® |0)
< distinguished perfectly by LOCC. V2
. . 1
- Cannot be distinguished “asymptotocially”, +\ =
\ or with € error probability 4. / ¢3 > \/§ |2> E ( O> = |1>)
| ] Yy ) = \7(|1>i|2>)®\2>

0) 1) 2)



Background & Motivation — The Need
for Precise Definitions

e 2011 - The task of tripartite “random distillation” is shown to be
achievable by LOCC only asyomptotically®.

Transformation possible
with probability 1 —eiff e >0 .

Asymptotic
in success probability



Background & Motivation — The Need
for Precise Definitions

Minimum Number of LOCC Rounds (n)
Versus Concurrence of ¢(Z¢)

P

e Modify the task by
reducing the distilled
entanglement®.
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1 Asymptotic

in round number



Defining the Class of LOCC

e A general LOCC protocol:

Process continues
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Alice performs quantum
operation {A;, }i,—1...
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Defininc the Class nf LQCC

e We identify LOCC protocols as quantum instruments, or
sequences of CP maps J = (&1, &,, ...) built up in this manner.

e LOCC, denotes the set of all instruments realizable in r rounds.

e LOCCy := U, LOCC,. <———— Bounded-round protocols

o A distance between two instruments J = (&1, ..., &) and

= (Fi, ., Fi) Is given by |13, 3o := X5_; 1165 = Fllo-

e LOCC is the union of LOCCy and the limit points of all unbounded-
round protocols (that converge).

e LOCCy denotes the closure of LOCCly.




LOCC Instruments

LOCC instrument

/

LOCCy V

Sequences of finite round protocols
where each protocol in sequence is
obtained from the previous by ”going
one more round”
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LOCC closure

What classes of LOCC protocols are closed?




Why Bounded-Round Closure is
Perhaps not Obvious

Even for bounded-round protocols
with a finite number of final Alice
outcomes, the protocol may

involve an unbounded number
of measurement outcomes
in the middle.
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Bounded-Round Compactnhess

Lemma. For an N-partite system of total dimension D, suppose
that J = (&1, ...,&y) is an instrument in LOCC,..

Then there exists an r-round protocol that implements
(&1, ...,Em) such that each instrument in round 1 <17 <r
consists of no more than D*"—!*+1) maps.



Effective “Choi Matrix” Q for LOCC
Protocol

(@)

Carathéodory’s Theorem:

Let S be a subset of R™ and conv(S) its convex hull. Then any
x € conv(S) can be expressed as a convex combination of at most
n + 1 elements of S.
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Cleaning Up the LOCC Tree

Alice

Bob

Alice




Cleaning Up the LOCC Tree
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Cleaning Up the LOCC Tree
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Cleaning Up the LOCC Tree

Alice
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Bipartite Sequences with Unbounded
Rounds

e Borrow from the tripartite random distillation scheme.

(7Y (4

e Alice and Bob both measure { Mg, M; }.

e If either of them obtains outcome “0,” they halt. Otherwise, they
repeat the measurement.

e They repeat this for v iterations.

e There are four possible outcomes per iteration, and we coarse-grain
over all the interations:

two parameters: -, (€) = (Ev005 Evot, Ev10, Eva).

v and €



Bipartite Sequences with Unbounded
Rounds

Ju(€) = (Evoo, Evor, Ev10, Evit)-

e Letting v — oo gives a sequence (indexed by ¢)
of unbounded round protocols.

e Letting ¢ — 0 gives the limit instrument of this sequence.

e The three element limit instrument:

Eoo(p) = [11)(11]p[11)(11], T, = /i/3 (1 0)
2 L= 0 1
Eo1(p) = Z(Ti ® 0)(0])p(T} ® |0)(0]),
5 T, = /173 ( (1)/2

Ero(p) = > _(10)(0] ® T3)p(|0)(0] @ T})

1=1



Bipartite Sequences with Unbounded
Rounds

e We embed the protocol into tripartite system where Alice and Bob
are entangled with Charlie.

e Charlie acts trivially.

W) = /1/3(|100) + |010) -+ |001))

00 00
01/34/9 0
04/92/30
00 00

This transformation
is impossible!




Conclusions and Open Questions

e The set of n-outcome instruments in LOCC,. is compact.

e For bipartite systems:

LOCC c LOCC C SEP

\T all proper inclusions.

e If we restrict attention only to POVMSs, might it be that
LOCC = LOCC?

e For LOCC protocols with unbounded rounds, does there exist a
relationship between round number and rate of convergence?



Thank You!
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Random Concurrence Distillation

(W' = /x0|000) + \/a:A\lOO) + /2 5|010) 4+ /z<|001)
General W-Class ¢

(zp > z0)

e Optimize:

< Cot >= ZP§A0)0(¢§AC))+

Y piPC (")
e Result:

2
<Ctot>< C( ) —2\/33ACEB+ZCC\/3§2
\ Entanglement Monotone!



Random Concurrence Distillation

e The limit instrument (Eyg, £o1,E10) transforms:

WY w40 & 0) <()|(B) w. prob. 1/2, 8 1(/)3 4(/)9 8
H B
10)(0]‘Y ® WP w. prob. 1/2, v 8 469 2(/)3 8

e For p € Mixed W-class,

C(p) = min Z p; C(¢;) is an entanglement monotone.
Pis|@i)

T

e Initial concurrence: C(|W)(W|) = 8/9.

e Final concurrence: C(w) = 8/9.

e Therefore, the transformation is impossible since C strictly decreases
upon first non-trivial measurement.




