16th Workshop on Quantum Information Processing

http://conference.iiis.tsinghua.edu.cn/QIP2013

Quantum Refrigerator

Michael Ben-OrDaniel GottesmanAvinatan HassidimThe Hebrew UniversityPerimeter InstituteBar-Ilan University

Tsinghua University, Beijing, China January 21-25, 2013

Computation bits/qubits

General fault-tolerant computation requires continuous supply of fresh clean bits/qubits

Fault-Tolerant/Noisy Computation Without Fresh Bits/Qubits?

Depolarizing Noise [ABIN96]:
$$\rho \rightarrow (1-p) \cdot \rho + p \cdot \frac{I}{2}$$

• Can compute for $T = \tilde{\theta}(\log n)$ steps:

Run standard error-correcting computation on part of the system Run simple purification on remaining unused qubits to obtain "clean qubits" Continue until all remaining qubits are used.

• Cannot compute for more than $T = O(\log n)$ steps:

$$I(X) = n - S(X)$$

$$I(X_0) = n$$

Show : $I(X_{t+1}) \le (1 - p) \cdot I(X_t)$
For $T = O(\log n)$ $I(X_T) \le \varepsilon$, so $S(X_T) \approx n$

and the full state is completely random and useless.

Fault-Tolerant/Noisy Computation Without Fresh Bits/Qubits?

Depolarizing Noise [ABIN96]: $\rho \rightarrow (1-p) \cdot \rho + p \cdot \frac{I}{2}$

• Can compute for $T = \tilde{\theta}(\log n)$ steps:

Run standard error-correcting computation on part of the system Run simple purification on remaining unused qubits to obtain "clean qubits" Continue until all remaining qubits are used.

• Cannot compute for more than $T = O(\log n)$ steps:

I(X) = n - S(X) $I(X_0) = n$ Show : $I(X_{t+1}) \le (1 - p) \cdot I(X_t)$ For $T = O(\log n)$ $I(X_T) \le \varepsilon$, so $S(X_T) \approx n$

and the full state is completely random and useless.

Fault-Tolerant/Noisy Computation Without Fresh Bits/Qubits?

Depolarizing Noise [ABIN96]: $\rho \rightarrow (1-p) \cdot \rho + p \cdot \frac{I}{2}$

• Can compute for $T = \tilde{\theta}(\log n)$ steps:

Run standard error-correcting computation on part of the system Run simple purification on remaining unused qubits to obtain "clean qubits" Continue until all remaining qubits are used.

• Cannot compute for more than $T = O(\log n)$ steps:

I(X) = n - S(X) $I(X_0) = n$ Show : $I(X_{t+1}) \le (1 - p) \cdot I(X_t)$ For $T = O(\log n)$ $I(X_T) \le \varepsilon$, so $S(X_T) \approx n$

and the full state is completely random and useless.

Classification of Quantum 1-Qubit Channels [KR01]

Bloch Sphere representation $\rho = \frac{1}{2}(I + w \cdot \sigma)$ where σ is the vector of Pauli matrices (X, Y, Z)and *w* is a real vector of norm ≤ 1 .

Up to unitaries $C(\frac{1}{2}[I + w \cdot \sigma]) = \frac{1}{2}[I + (t + T \cdot w) \cdot \sigma]$

T diagonal $T = \begin{pmatrix} \lambda_x & \\ & \lambda_y \\ & & \lambda_z \end{pmatrix}$ where $|\lambda_y \pm \lambda_z| \le |1 \pm \lambda_x|$ etc. Unital Channels have t = 0, and $C(\frac{1}{2}I) = \frac{1}{2}I$

Classification of Quantum 1-Qubit Channels

Depolarizing Shrinking to zero

Dephasing Shrinking to a diameter Non Unital Shrinking to a point ≠ 0

 $\rho \rightarrow (1-p) \cdot \rho + p \cdot \frac{1}{2}$

 $\rho \rightarrow (1-p) \cdot \rho + p \cdot Z \rho Z$

t ≠ 0

Polynomial Computation:

Can compute on n^{α} qubits for n^{β} steps if $\alpha \cdot \beta < 1$. **Proof:** Each step use a block of n^{α} clean qubits.

- No bounds on classical computation.
- Can keep an EPR pair up to $O(n/\log n)$ time steps.
- Polynomial Upper Bound:

Cannot keep entanglement more than $O(n^3)$ time. **Proof:** Channel does not decrease entropy.

If entropy does not grow state is close to invariant state. Invariant states of register are diagonal so state has almost no entanglement.

• Polynomial Computation:

Can compute on n^{α} qubits for n^{β} steps if $\alpha \cdot \beta < 1$. **Proof:** Each step use a block of n^{α} clean qubits.

- No bounds on classical computation.
- Can keep an EPR pair up to $O(n/\log n)$ time steps.
- Polynomial Upper Bound:
 - Cannot keep entanglement more than $O(n^3)$ time.
 - **Proof:** Channel does not decrease entropy.
 - If entropy does not grow state is close to invariant state. Invariant states of register are diagonal so state has almost no entanglement.

• Polynomial Computation:

Can compute on n^{α} qubits for n^{β} steps if $\alpha \cdot \beta < 1$. **Proof:** Each step use a block of n^{α} clean qubits.

- No bounds on classical computation.
- Can keep an EPR pair up to $O(n/\log n)$ time steps.
- Polynomial Upper Bound:

Cannot keep entanglement more than $O(n^3)$ time.

Proof: Channel does not decrease entropy.

If entropy does not grow state is close to invariant state. Invariant states of register are diagonal so state has almost no entanglement.

• Polynomial Computation:

Can compute on n^{α} qubits for n^{β} steps if $\alpha \cdot \beta < 1$. **Proof:** Each step use a block of n^{α} clean qubits.

- No bounds on classical computation.
- Can keep an EPR pair up to $O(n/\log n)$ time steps.

• Polynomial Upper Bound:

Cannot keep entanglement more than $O(n^3)$ time. **Proof:** Channel does not decrease entropy.

If entropy does not grow state is close to invariant state. Invariant states of register are diagonal so state has almost no entanglement.

Non Unital Channel Noise

The Quantum Refrigerator: If noise below thershold we can run a

computation of depth/time D on n qubits

- using O(n polylog(nD)) qubits
- and O(D polylog(nD)) computation steps.

- If *D* is exponential in *n* then the fault-tolerant system has polynomial overhead.
- Amplitude Damping channel with poly(*n*) qubits cannot compute more than exponential time.

Non Unital Channel Noise

The Quantum Refrigerator: If noise below thershold we can run a

computation of depth/time D on n qubits

- using O(n polylog(nD)) qubits
- and O(D polylog(nD)) computation steps.

- If *D* is exponential in *n* then the fault-tolerant system has polynomial overhead.
- Amplitude Damping channel with poly(*n*) qubits cannot compute more than exponential time.

The Quantum Refrigerator

The Quantum Refrigerator in 2-Dimensions

Quantum Refrigerator - Summary

We identify 3 types of behavior for independent 1-qubit noise, without supply of clean qubits (and polynomial overhead):

- **Depolarizing type:** Only logarithmic depth computation is possible.
- Depashing type: Polynomial length computation
- Non Unital type: Exponential length computation is possible.

Open Problems:

- Tighten upper bounds for dephasing channel
- Exponential upper bound for all non unital channels.
- Qudits of dimension > 2.

Quantum Refrigerator - Summary

We identify 3 types of behavior for independent 1-qubit noise, without supply of clean qubits (and polynomial overhead):

- **Depolarizing type:** Only logarithmic depth computation is possible.
- Depashing type: Polynomial length computation
- Non Unital type: Exponential length computation is possible.

Open Problems:

- Tighten upper bounds for dephasing channel
- Exponential upper bound for all non unital channels.
- Qudits of dimension > 2.

